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Abstract

This thesis aims mainly to study some results concerning dynamics and bifurcation
of two special cases of second order rational difference equations with quadratic
terms. And introduce some Matlab codes that use thesis results.

We consider the second order, quadratic rational difference equations

Oé—i_ﬁxnfl
il = L n=0,1,2 ..
Tnt A+ Ba2 + Cxypy "
and
a+ a2
Tp1 = n L n=0,1,2 ..
T A+ Br, +Ca2,

with positive parameters o, 3, A, B, C, and non-negative initial conditions.

We investigate local stability, invariant intervals, boundedness of the solutions,
periodic solutions of prime period two and global stability of the positive fixed points.
And we study the types of bifurcation exist where the change of stability occurs.
Then, we give some Matlab codes that use thesis results and numerical discussions

with figures to support our results.
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0. INTRODUCTION

A dynamical system is a system whose behavior at a given time depends on its
behavior at one or more previous time. One of the main objectives in the theory of

dynamical systems is the study of the behavior of orbits near fixed points.

Dynamical systems are a fundamental part of bifurcation theory which studies
the changes in the qualitative or topological structure of systems. The term bifur-
cation refers to the phenomenon of a system exhibiting new dynamical behavior as

the parameter is varied.

Our Equations ((0.1.2), (0.1.3)) are special cases of equation

a+ Brn_1+ YT, + 012+ Crpyg + 2

= =0, 1, 2, ... 0.1.1
A+D:1:n_1—I—an+C’x?L_1+Exnxn_1+Fx%’n T ( )

Tni1

Some special cases of (0.1.1) have been considered in many papers. In [2] and
[3] global stability character, the periodic nature, and the boundedness of solutions
of special cases of equation

o+ ﬁxnxn—l + YLn—1
A+ Bx,xnq1+ Cxpy’

Tn+1 = n=0,1, 2,

have been studied, with non-negative parameters and with arbitrary non-negative
initial conditions such that the denominator is always positive.

A. M. Amleh, E. Camouzis and G. Ladas [1] considered equations 24 and 25 in

[3], they confirmed some conjectures and solved some open problems stated.
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In [7] M. GariT-Demirovié¢ et al. investigated global behavior of the equation

n—1
) n= 07 17 27
ar? + bryx, 1 + Cx?_,

Tnt1 =

where the parameters a, b, and ¢ are positive numbers and the initial conditions

x_1 and x( are arbitrary non-negative numbers such that z_; + x¢ > 0.

Global asymptotic stability and Neimark-Sacker bifurcation of the difference

equation

F
Tpt1 = , n=20,1, 2,
T b, - Cx |+ f
have been investigated by M. R. S. Kulenovi¢ et al. [8], with non-negative parameters

and non-negative initial conditions such that the denominator is always positive.

Y. Kostrov and Z. Kudlak in [14] studied the boundedness character, local and
global stability of solutions of the following second-order rational difference equation
with quadratic denominator,

. o+ Yrnp_q
B + Dxnxn—l + xn—l’

Tnt+1 n = 07 17 27

where the coefficients are positive numbers, and the initial conditions are non-

negative numbers such that the denominator is nonzero.

S. Moranjkié¢, and Z. Nurkanovié [13] investigated local and global dynamics of
difference equation

Bz,r, 1+ Cx?_ |+ F

brpxn 1 +cxi |+ f

Lnt1 = n=20,1, 2

with positive parameters and nonnegative initial conditions.

In [6] the dynamics and behavior of the solution rational difference equation of

the form
« + 5l'n—1

T AT Bz, +Cxp_y’

was studied with positive parameters «, 3, A, B, C, and non-negative initial con-

T+l n=20,1, 2, ..

ditions. They focus on the dynamic behavior of the positive fixed point and the
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type of bifurcation exist where the change of stability occurs.

A. Shareef [4] studied Neimark-Sacker bifurcation of higher order rational dif-

ference equations.

This thesis consists of four main chapters. In chapter 1, we explain the definition
of dynamical systems. Then, we focus on fixed points and their stability of first order
and second order discrete dynamical systems. Chapter 2 studies types of bifurcation
and their sufficient conditions in simplest forms in discrete dynamical systems of one
and two dimensions. Chapter 3 studies the dynamics and behavior of the solutions
of the second order, quadratic rational difference equation

x o o+ ,an,1
T A Bx?2 + Czy, '

n=0,1,2, .. (0.1.2)

with positive parameters o, 5, A, B, C, and non-negative initial conditions.

We focus on local stability, invariant intervals, boundedness of solutions, periodic
solutions of prime period two and global stability of positive fixed points. We study
also the types of bifurcation exist where the change of stability occurs. Then, we
give some Matlab codes that use thesis results and numerical discussions with figures

to support our results.
Chapter 4 studies the dynamics and behavior of the solutions of the second
order, quadratic rational difference equation

o+ Bk
A+ Bx, 4+ Cx

—,n=0,1,2 .. (0.1.3)

n—1

Tn41 =

with positive parameters «, 5, A, B, C, and non-negative initial conditions.

We focus on local stability, invariant intervals, boundedness of solutions, periodic
solutions of prime period two and global stability of positive fixed points. We study
also the types of bifurcation exist where the change of stability occurs. Then, we
give some Matlab codes that use thesis results and numerical discussions with figures

to support our results.



1. BASIC DEFINITIONS AND RESULTS

Dynamical systems include state (phase) space and a law of evolution of the state
in time. The state space contains points that characterize all possible states of the
system. Each point in state space must be sufficient not only to describe the current

“position” of the system but also to determine its evolution.

Evolution law is defined as a map f! for given t € T, and f! is defined on the
phase space X as
fl: X =X

ft is often called the evolution operator of the dynamical system. f! transforms an

initial state zo € X into some state z; € X at time ¢ as follows
ftxo = Ty
or we denote f'zo by z(t).

Definition 1. /5] A dynamical system is a triple {T, X, f'}, where T is a time set,
X is a phase space, and ft: X — X is a family of evolution operators parametrized
byteT.

In this thesis we consider dynamical systems with discrete (integer) time, whose

law of evolution is difference equation.
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1.1 Dynamics of first-order difference equations

Consider the first order difference equation of the form
z(n+1) = f(z(n)), n=0, 1, 2, ... (1.1.1)
where f: X — X is a continuous map, and z(0) is an initial condition. Note that

z(1) = f(x(0))
2(2) = f(x(1)) = f(f(2(0)))

w(n+1) = f(x(n)) = f*((0)).
We can also denote z(n) by z,.
Definition 2. [9] A point & € X is an equilibrium (fized) point of Equation (1.1.1)
if £(z) = 7.
In other words, 7 is a constant solution of (1.1.1), since if (0) = Z is an initial
point, then x(1) = f(Z) = z, and x(2) = f(x(1)) = f(Z) = Z, and so on.

Graphically, if we draw the graph of f, and then we draw the diagonal line

y = x, the z-coordinate of intersection points are the equilibrium points of f.
Example 1.1. Consider the function
fla) =",

To find fized points of f we solve f(x) = x. Hence the fized points are —1, 0, 1.
Figure (1.1) illustrate how to find these fized points.
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Fig. 1.1: Fixed points of f(z) = 3.

Definition 3. [5] An orbit starting at xq is an ordered subset of the state space X,
Or(zg) ={x € X : = fYxg), for all t € T such that f'(x¢) is defined}.

It is possible in difference equations that a solution may not be an equilibrium
point but may reach one after finitely many iterations. This leads to the following

definition.

Definition 4. [9] Consider Equation (1.1.1), let x* € X. If there exists a positive
integer k and an equilibrium point T of (1.1.1) such that f*(z*) = z, and f*(z*) #

T, then x* is an eventually fixed (equilibrium) point.

Example 1.2. Let T be the tent map defined by

2x nggé
T(x) = 1
2(1 —x) <z <1
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% is an eventually fixed point. since T4(§) =0, T3(§) =1#£0, and x* =0 is a fized

point of T'.

Definition 5. [9] Consider Equation (1.1.1), let b € X. If for some positive integer
k, f*(b) = b, then b is a k-periodic point of, and the periodic orbit of b is called a
k-cycle.

1.2 Stability of one-dimensional maps

Analyzing the behavior of a dynamical system solutions near an equilibrium point is
one of the main objectives in the study of dynamical system, which constitutes the
stability theory. We introduce the definition of stability and some results concerning

it.

Definition 6. [11] Let & be an equilibrium point of Equation (1.1.1).

1. The equilibrium point is called stable if for every e > 0, there exists 6 > 0 such
that if |xg — x| < 9, then |x, — z| < € for alln > 0.

2. The equilibrium point is called attracting, if there exists v > 0 such that if

|zg — Z| < 7, then lim, o ©, = T.

The equilibrium T is called a global attractor if v = oo.

3. The equilibrium point is called asymptotically stable if it is stable and attract-

ing. If v =00, T is called globally asymptotically stable.

4. The equilibrium point is called unstable if it is not stable.

We have the following results concerning the asymptotic stability of equilibrium

points.

Theorem 1.1. [11] Consider Equation (1.1.1) where fis continuously differentiable

at the equilibrium point x. Then:
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1. If|f(2)| < 1, then T is asymptoticly stable.

2. If | f'(z)| > 1, then T is unstable.
Note that the equilibrium point has two types:

1. Hyperbolic If | f'(z)| # 1.

2. Non-hyperbolic if |f'(z)| = 1.

Now we introduce some results for non-hyperbolic fixed points.
Theorem 1.2. [11] Suppose that for an equilibrium point T of (1.1.1), f'(z) = 1.
The following statements then hold:
1. If f"(%) # 0, then T is unstable.
2. If f"(z) =0 and f"(z) > 0, then T is unstable.
3. If f"() =0 and f"(z) <0, then T is asymptotically stable.

Definition 7. [11] The Schwarzian derivative of a function f denoted by Sf is

d d b
e by ) 3 w)

T 2 )
If f'(z) = —1, then
SH@) =~ 1"(@) - S @)

Theorem 1.3. [11] Suppose that for an equilibrium point T of (1.1.1), f'(z) = —1.
The following statements then hold:

1. If Sf(z) < 0, then T is asymptotically stable.

2. If Sf(z) >0, then T is unstable.
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Example 1.3. Consider the function
f(x) =3z —2* 2€]0,3

To find fized points of f solve f(x) = x. Hence the fized points are 1 =0, T3 = 2.

Now we find f' to determine the stability of 7 and x,,
f(z) =3 —2x.

For 7
f0)=3>1,

so using Theorem 1.1, 1 is unstable.

For x4

so we find Sf(2)

using Theorem 1.3, 25 s stable.

We can use a graphical method for analyzing the stability of equilibrium points
for (1.1.1) called Cobweb diagram. We draw a graph of f in the (z(n), z(n+1)) plane.
Then, given x(0) = zo, we pinpoint the value x(1) by drawing a vertical line through
xo so that it also intersects the graph of f at (xg,z(1)). Next, draw a horizontal
line from (zy,x(1)) to meet the diagonal line y = z at the point (z(1),x(1)). A
vertical line drawn from the point (z(1),z(1)) will meet the graph of f at the point
(z(1),2(2)). Continuing this process, we can find z(n) for all n > 0.

Example 1.4. Consider the function in Example 1.2. Cobweb diagram (1.2) shows

that x5 is stable. Figure (1.3) shows the behavior of z,, near ;.
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Fig. 1.2: The Cobweb diagram: Ty is asymptotically stable fixed point.
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Fig. 1.3: The behavior of the solutions near the fixed point x=2

1.3 Dynamics of second order difference equations

Consider the second order difference equation,

z(n+1)= f(z(n),z(n—-1)), n=0, 1, 2, ...

(1.3.1)

Where f: I x I — I is a continuously differentiable function, and I is an interval

of real numbers. Then for every set of initial conditions x_1, xg € I the difference
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equation (1.3.1) has a unique solution {z,}7° _;.

Definition 8. [9] A point T € I is an equilibrium point of Equation (1.5.1) if
f(z,z) =1z.

Definition 9. [9] Let & be an equilibrium point of Equation (1.5.1). Then

1. x is called locally stable if for every € > 0, there exists & > 0 such that if
|z_1 — Z| + |xg — Z| < 9, then |x, — Z| < € for alln > 0.

2. T is called attracting, if there exists v > 0 such that if |x_1 — Z| + |xg — Z| < 7,

then lim,, oo x, = T.
3. T 1s called a global attractor if for every x_1, xq € I we have lim, . z, = .

4. x 1s called globally asymptotically stable if it is locally stable and a global at-

tractor.
5. T 1s called unstable if it is not stable.

Definition 10. /9]

1. A solution {x,}>2 | of Equation (1.3.1) is said to be periodic with period p if

Tptp = Ty, for alln > —1.

2. A solution {x,}>2 _, of Equation (1.5.1) is said to be periodic with prime period
p, or p-cycle if it is periodic with period p and p is the least positive integer

for which x,,, = x, for alln > —1.

Definition 11. /9] Consider the difference equation (1.3.1). Then the linearized

equation associated with this difference equation is
Yn+1 = QYn + bynfla n= 07 17 27

Where a = %(E, z), and b = %(3_3, z) denote the partial derivatives of f(u,v) eval-

uated at the equilibrium .
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And the characteristic equation of (1.3.1) is
M —a\—b=0 (1.3.2)

Theorem 1.4. [11] (Linearized Stability)
Consider the characteristic Equation (1.3.2).

1. If both characteristic roots of (1.3.2) lie inside the unit disk in the complex
plane, then the equilibrium T of (1.5.1) is locally asymptotically stable.

2. If at least one characteristic root of (1.3.2) is outside the unit disk in the

complex plane, the equilibrium point T is unstable.

3. If one characteristic root of (1.3.2) is on the unit disk and the other charac-
teristic root is either inside or on the unit disk, then the equilibrium point T

may be stable, unstable, or asymptotically stable.

4. A necessary and sufficient condition for both roots of (1.3.2) to lie inside the

unit disk in the complex plane, is

la| <1-b<2.

Let A = Jf(Z) is the Jacobian matrix of f at z, where

oh  Of
TH@ =3 o)

6361 8:22

Let p(A) = max;{|\i|, \iis an eigenvalue of A} be the spectral norm of A.

Theorem 1.5. [10] Consider the map f : H C R*> — R? be a C' map, where H is
an open subset of R?, T is a fized point of f, A = Jf(Z), with spectral norm p(A).
Then the following statements hold:

1. If p(A) < 1, then T is asymptotically stable.
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2. If p(A) > 1, then T is unstable.

3. If p(A) =1, then T may or may not be stable.

Another important way to determine the stability of fixed points is given in the

following result.

Theorem 1.6. [10] Consider the map f: H C R* — R?, and let A = Jf(T), with
spectral norm p(A). Then p(A) < 1, if and only if

Itr(A)] — 1 < det(A) < 1

where tr(A) is the trace of A, and det(A) is the determinant of A.

Note that the stability region in the trace-determinant plane is enclosed by the
lines det(A) = tr(A) — 1, det(A) = —tr(A) — 1, and det(A) = 1. These lines are

important in the study of the bifurcation of any second order dimensional system.

The following theorem will be used to investigate global stability of fixed points.

Theorem 1.7. [9] Let [a,b] be an interval of real numbers and assume that f :

la,b] x [a,b] — [a,b] is a continuous function satisfying the following properties:

1. f(z,y) is non-increasing in x € [a,b] for each y € |a,b], f(x,y) is non-
decreasing in y € [a,b] for each x € [a,].
2. The difference Equation (1.3.1) has no solutions of prime period two in [a, b].

Then (1.3.1) has a unique equilibrium T € [a,b] and every solution of (1.5.1)

converges to .



2. BIFURCATION OF FIXED POINTS

The expression “bifurcation” is extremely general. We use it to describe the orbit

structure near non-hyperbolic fixed points.

Definition 12. Bifurcation is a change of the topological type of the system as its

parameters pass through a bifurcation (critical) value.

Bifurcation diagram display the location and stability of fixed point as a func-
tion of the parameter in a single plot. The locations of unstable fixed points are

shown dashed, while stable fixed points are represented by solid lines.

For one-dimensional systems, there are several types of bifurcations which are

saddle-node, transcritical, pitchfork and period-doubling bifurcation.

2.1 Bifurcation of one-parameter family of one-dimensional maps

Consider a one-parameter map
x—>f(m,,u), l‘ER, MER

a fixed point (Z, u*) is a bifurcation point if either only one branch or more than one
branch of fixed points passes through (z, u*) in the x — p plane, then it lies entirely

on one side of the line ;= p* in the x — p plane.

In this section we present general conditions under which a one-parameter fam-
ily of one-dimensional map will undergo a saddle-node, pitchfork, transcritical and

period-doubling bifurcation.
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Note that if we have more than one parameter, we will fix all parameters except

one.

2.2 The Saddle-node bifurcation

Saddle-node bifurcation associated with the appearance of a slope 1. A unique curve
of fixed points passes through the non hyperbolic fixed point (z, u*). Moreover, the

curve lies entirely on one side of the 4 = p* in the x — p plane.

Theorem 2.1 (The Saddle-node Bifurcation ). [10]
Suppose that f(x,u) is a C* one-parameter family of one-dimensional maps (i.e.,

both 2L and L& exist and are continuous), and T is a fized point of f(x,un), with

Ozx2 Op2
%(@M*) = 1. Assume also that
of
A= =(z,4") #0.
au(:mu ) #
And "
= @(i‘vﬂ*) 7é 0.

Then there exists an interval I around T and a C* map p = p(x), where p: [ — R
such that p(z) = p*, and f(z,p(x)) = x.

Moreover, if AB < 0, the fived points exist for p > p*, and, if AB > 0, the fized
points exist for p < u*.

To prove Theorem 2.1, we need the Implicit Function Theorem.

Theorem 2.2. Suppose that G : RxR — R is a C* map in both variables such that
for some (p*,2*) € R x R, G(pu*,z*) =0 and %(,u*,x*) # 0. Then, there exists an
open interval J around p*, and open interval I around x*, and a C* map p = p(x),

where p : I — J such that

1. p(x*) = p*.
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2. G(p(z),z) =0, forallx € 1.

Proof of Theorem 2.1. Suppose that f(x,u) is a C? one-parameter family of one-
dimensional maps (i.e., both ‘327{ and g%]; exist and are continuous), and 7 is a fixed
point of f(x,p), with g—i(f,u*) = 1. Assume also that A = g—i(f,u*) # 0 and
52

B =%z, 1) #0.
Let
Note that G is a C! map and G(z, u*) = 0 and

a_GCz *) — ﬁ

Applying the implicit function theorem, there exist an open interval J around Zz,

(Z,u")=A#0.

and open interval I around p*, and a C!' map u = p(z), where p : J — I such that

*

p(T) = p
and
G(z,p(x)) =0, forall x € J.

Thus
f(z,p(x)) =z, forall x € J. (2.2.1)

Differentiating both sides of the last equation with respect to =, we obtain

0
)+ S 1.

Since %(i‘,,u*) =1 and g—ﬁ(f,u*) # 0, we have p'(7) = 0.

Differentiating (2.2.1) one more time with respect to x we get

an — * an — * /[ —
@(%N ) + 8_/ﬂ<$’“ )" (7) = 0.

This implies
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So the function p(z) = p has critical point at z = z. If AB < 0, then p”(Z) >0
and the curve p(z) is concave upward at = Z. Hence, the curve p(x) opens to the
right and if AB > 0, then p(x) is concave downward at © = z. Figures (2.1) and
(2.2) illustrate saddle-node bifurcation when AB < 0 and AB > 0.

1=P(x)

l ”
u=P(x); AB<0

Fig. 2.1: Saddle-node bifurcation when AB < 0.

u
u=P(x); AB>0

Fig. 2.2: Saddle-node bifurcation when AB > 0.

Example 2.1. Consider the map

flo,p)=p—2°, v €R, peR.
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To find the fixed points of f(x,pn) we solve the following equation
P+ —pu=0,

so the fized points are

-1+ 144
5 :

T12 =
Note that the fized points exist for p > —}l. And we have a non-hyperbolic fixed
point T = —3% with %(:jz,u*) =1 when p* = —1.
Observe that %(i’,,u*) # 0, and %(E,u*) # 0. Using Theorem 2.1 the
saddle-node bifurcation is present at (—%, —}l).

In order to draw the bifurcation diagram we check the stability of the system
near the bifurcation point (—%, —i).
Note that

f'(x,p) = —2x.

The upper branch © = —2=51 s asymptotically stable if

2
1—+v1+4p
2

11 <1

which holds if —;11 <p < %. So the upper branch is asymptotically stable if —711 <
< %. See figure 2.5.

The lower branch is unstable since
1++/1+4
f’(—#ﬂ,u) =1++/14+4p>1

for all values of .

2.3 Transcritical bifurcation

Consider a one-parameter map

x—)f(:c,,u), SL’ER, ,U/ER
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Sadde-node bifrcation of the map'l'l.nl-x:-c £

SR

parametar

Fig. 2.3: Saddle-node bifurcation.

with fixed point . Transcritical bifurcation is another type of bifurcation of one-
dimensional maps. This type appears when we have two curves of fixed points that
intersect at the non-hyperbolic fixed point (zZ, ©*) in the p — x plane. Both curves
exist on either sides of the line y = p*. However, the stability of the fixed point

along a given curve changes when passing through pu = p*.

Theorem 2.3. [12] Suppose that f(z,p) is a C"(r > 1) map where v € R, p € R
and (T, p*) is a non-hyperbolic fized point of f(x,n) such that

0

.y =1,
0

) =0,
o2 f

and o/
@(fau ) # 0,

Then f undergoes a transcritical bifurcation at (T, pu*).

Proof: Let
G(x7ILL) = f(x7u) -
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since

X =

Gla.p) ifr £
Bz, p) =19 0.
(7, p) ifs =7
We have . of
B(x,,u*) = %( nu*) = %(fnu*) —-1=0
and
0B 0 0G 0*f

By Implicit Function Theorem there is a C* map pu = p(z) defined on an interval T

around Z such that p(z) = p* and

B(z,p(z)) =0, Yz € I. (2.3.1)
Hence,
e
r—

for x # z, so f(x,p(x)) = x. Differentiate (2.3.1) with respect to x we get

9B, ., 0B, . ., =
%(fﬂ,u ) + aﬂ(x,u )'(z) =0

since 0B 10°G 10%f
a—x(f,ﬁb ) = 5@@# ) = 5@(5&# ) #0
and

oB . . 0’°G

we have p/(Z) # 0. This means that p(x) does not coincide with x = Z and exists on
both sides of y = p*. [

Example 2.2. Consider the map

flz,p)=px+2°, v€R, peR.
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To find the fixed points of f(x,pn) we solve the following equation
2+ (p— 1)z =0,

so the fized points are

for p # 0.
Since %(O, 1) =1, (0,1) is a non-hyperbolic fized point of the map f.

To check the stability of the fized points near the point (0,1) we find when

of
and of
Fp L~ )l < 1.

The first inequality holds if —1 < p < 1, and the second inequality holds if 1 < p < 3.

So the branch x = 0 is asymptotically stable if —1 < p < 1, and the branch p—1
is asymptotically stable if 1 < p < 3. The two branches intersect at the bifurcation
point (0,1) where the branch x = 0 is stable and the other branch p — 1 is unstable
before (0,1). Beyond pn =1 the branch x = 0 becomes unstable and the other branch

becomes stable. So change of stability occurs at p = 1.

2.4  Pitchfork bifurcation

Consider the one-parameter map
x—>f(x,,u), IER, ,U/ER

with fixed point z. Pitchfork bifurcation is a type of bifurcation in one-dimensional
systems which appears when we have two curves of fixed points intersect at the non-

hyperbolic fixed point (Z, ©*) in the p — x plane. only one curve exists on both sides
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Transcritical bifurcation of the map i(x)=x2+cx

parameter ¢

Fig. 2.4: Transcritical bifurcation.

of © = p*; however, its stability changes when passing through u = p*. The other
curve of fixed point lies entirely in one side of the line y = p* and has a stability

type that is the opposite of the other curve.

Theorem 2.4. [12] Suppose that f(x,p) is a C* one-parameter family of one-
dimensional map, where x € R, p € R with a non-hyperbolic fixed point (T, u*)
such that

of _
= * — 7 —_J * — 1
f(@,p7) =7 and - (%, 1")
Assume also that
of
A: —(z *) =
aM(rc,u) 0,
>’f,
C= @('xmu ) - 07
’f .,
and &
= @(%M ) # 0,

Then pitchfork bifurcation is present at (T, p*).
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Proof: Let
G(:L’,/L) = f(ac,,u) -,

we have G(z, u*) = 0, and %(i‘, p*) = 0. So we can not apply the Implicit Function

Theorem.
Let "
Glap ifr#1
Bla,p) =< &~ . _
% (7 p0) ife=7
We have oC of
B(fnu*) = %(i’,u*) = %(73,#*) —1=0
and
0B 0 0G B 0% f

By the Implicit Function Theorem there is a C* map p = p(z) defined on an interval

I around Z such that p(z) = p* and
B(z,p(z)) =0, Yz € I. (2.4.1)

Differentiate (2.4.1) with respect to = we get

OB, . 0B, _ .,
%(%M )+ @(%ﬂ ) (7) =0
since OB 10°G 10°f
%(%N ) = oW (@, p) = 3922 (@, p) =0
and

0B . PG .

we have p/(Z) = 0. So 7 is a critical point of the map u = p(x).

Differentiate (2.3.1) again with respect to x, and substitute (z, u*) and p/(Z) = 0 we
get

?*B, . 0B, _ . .,

w(%# ) + 8—M($;M )" (@) = 0.

Since
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and

OB, . 004G, . &Pf
@(%M )= @%(%M )= Emax(l”,u ) # 0
llf_E

The last formula implies that if ED < 0, then p”(Z) > 0 and the curve p(z) is
concave upward at z =  and if ED > 0, then the curve p(x) is concave downward

at x = 7. |
Example 2.3. Consider the map
flo,p) =pr —22°, v €R, p R,
To find the fized points of f(x,u), we solve the following equation
(n— 1)z —22° =0,

so we have two curves of fized points

Note that (0,1) is non-hyperbolic fized point of f such that

af B
ax(oal) - ]-7
of
%(071) =0,
0% f B
7,201 =0,

0% f
Oxou

(0’ 1) =1,

and o
@(0, 1) =-12,

So at (0, 1) pitchfork bifurcation is present. Now we study the behavior of the system
near the bifurcation point (0,1).

If/(0,p) <1if =1 <pu<1and |f’(i\/@,u)| <1lifl<pu<2 Sowe have one
branch of stable fixed points x = 0 for —1 < pu < 1. Beyond pu = 1 this fixed point
looses its stability and two stable branches x = i\/g appear. Beyond jn = 2 these

two branches looses their stability.
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Pitchfork bifurcation of fix)=c x 23

0a
06
04

02

02

-04

06

08

ra

L 1 1 1 1 1
-1 -0.5 0 0.5 1 15
parameter ¢

Fig. 2.5: Pitchfork bifurcation.
2.5  Period-Doubling bifurcation

Consider the one-parameter map

'T_>f(x7lu’)7 .CL’GR, NER

with non-hyperbolic fixed point z. period-doubling bifurcation is a type of bifurca-

tion in one-dimensional maps which have a non-hyperbolic fixed point (z, u*) with

slope —1 and the second iterate of the map undergoes pitchfork bifurcation at the

same non-hyperbolic fixed point.

Theorem 2.5 (Period-Doubling Bifurcation ). [10] Suppose that f(x, u) is a C"(r >

2) map where x € R, p € R and T is a fized point of f(x, ) such that

of . .
%(qu ) = _]-)
and o 2

(2.5.1)

(2.5.2)

Then there is an interval I around T and a function p : I — R such that

f@,p(2)) #  but f*(2,p(z)) = .
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Proof: Let f(z,p) is a C? map where x € R, p € R that satisfies (2.5.1) and (2.5.2).
Let

Gz, p) = fAa,p) — 2
where f?(x, ) = f(f(z,u), ). Note that

0G o O OF O

%(ﬂc,u )= ax(w,u )aﬂ(w,u ) + au(x,u ) =0

since (2.5.1) holds. So we can not use the Implicit Function Theorem.

Define the function

Cond ifr 4z
B(z,p) = { Z_x

9 (T, p) ifr=1
We have . of
— ¥\ _ = *\ _ [ (& *\12 __ —
and
OB o 0G 0

a—u(fﬁaﬂ*) = @(%(%N))M* = aﬂax@ﬂ*) # 0.

By Implicit Function Theorem there is a C* map pu = p(z) defined on an interval [

around T such that p(z) = p* and

B(z,p(z)) =0, Yz € I. (2.5.3)
And so
Gla,p) _
r—2x
f(x,p(r)) =z,
so x is a two-period point of f(x, u). [ |

Example 2.4. Consider the map
flz,u) =22 +1—pz, r €R, p€R.
To find the fixed points of f(x,n) we solve the following equation

2% — px =0,
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so we have two curves of fized points

Since £(0,2) =0 and %(O, 2) = —1, (0,2) is a non-hyperbolic fixed point of the
map f.

The curve x = 0 is stable if 0 < p < 2 and the curve z% = £ does not exist if

1 < 0 and unstable for p > 0.

Thus for p > 2, the map has three unstable curves of fixed points. Period-
doubling bifurcation may be present at (0,2). The two-periodic points are the roots
of the function

Q(Iaﬁo ::fQ(x7M>'_:E
where
) = (p = 1% = 2(1° = 3p° 4 4p — 2)2° + O(x").

Observe that

f%(0,2) =0,
of?
%(072) =1,
2
%(0,2) 0,
82f2
52 (0:2) =0,
a2f2
3x8u(0’2) #0,
and 83f2
W(Oﬂ) # 0,

Thus (0,2) is a non-hyperbolic fized point of the map f?(x,u) where this map un-
dergoes a pitchfork bifurcation. So period-doubling bifurcation is present at (0,2).
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We can use the normal form of flip bifurcation theorem to check if the system
undergoes a period-doubling (flip ) bifurcation. We will study the normal form

theorem for flip bifurcation in the simplest form.

2.5.1  The normal form of the period-doubling (flip) bifurcation

Consider the following one-dimensional dynamical system depending on one param-
eter:

v =14 pz +2° = f(z, ),

The map f(z, ) is invertible for small || in a neighborhood of the origin.
f(z, ) has the fixed point ¢ = 0 for all u with eigenvalue A = —(1+ p). The point
is linearly stable for small i < 0 and is linearly unstable for ;4 > 0. And at u = 0,
A = f2(0,0) = —1 so the point is not-hyperbolic. There are no other fixed points

near the origin for small |pu].
Consider now the second iterate f2(z, ). If y = f(x, p), then

Pl =fly,w)=—Q+py+y°
= (L +p) (=0 +pr+2*) + (=1 + pe+2%)
= (14 p)%x + [(1+ @) (2 + 2u + p*)]2® + O ().

So the map f2(x,u) has the trivial fixed point 2o = 0. It also has two nontrivial

fixed points for small > 0, which are

T12 = f2($1,2, M)7

where 215 = £(y/1t + O()). These two points are stable and constitute a cycle of

period two for the original map f(z, i) as follows

x1 = f(xa, 1), w2 = flx1, ).

As p approaches zero, the period-two cycle shrinks and disappears. This is a flip

(period-doubling) bifurcation and in this case it is called supercritical. Note that
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the trivial fixed point is stable for p < 0 and the period-two cycle {z1, 2} exists for
> 0.

The case
= —(14 o+ 2°

can be treated in the same way and the flip bifurcation in this case is called sub-

critical. [5]

2.5.2  Generic flip bifurcation

Theorem 2.6. [5] Suppose that a one-dimensional map
x> f(z,p), reR, peR
with smooth f, has at =0 a trivial fived point xo = 0 and let A = f,(0,0) = —1.
Assume the following nondegeneracy conditions are satisfied:
1. 3(f2e(0,0))* + 3(f222(0,0)) # 0.
2. £2,(0,0) #£ 0.

Then there are smooth invertible coordinate and parameter changes transforming the

system into

Ers —(1+ )6+ +0(Y.

Proof: By the Implicit Function Theorem,the system has a unique fixed point xo(u)
in some neighborhood of the origin for all sufficiently small |u|, since f,(0,0) # 1.
We can perform a coordinate shift, placing this fixed point at the origin. Therefore,
we can assume without loss of generality that x = 0 is the fixed point of the system

for |u| sufficiently small. Thus, the map f can be written as follows:

fx, ) = f2(0, p)a + %fm(Q )z’ + éfm(O, )z’ 4+ O(x?). (2.5.4)
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Where f,(0, 1) = —[1 + g(u)] for some smooth function g. Since ¢g(0) = 0 and
9'(0) = f2u(0,0) # 0,
the function g is locally invertible and can be used to introduce a new parameter:
a = g(u).
Map (2.5.4) can be written as
7 = p(a)r + a(a)r? + b(a)z® + O(x*),
where p(a) = —(1 + «), and the functions a(«) and b(«) are smooth and equal:
(0) = 3 fuel0,10), (@) = ¢ Fruel0, ).
Define a smooth function ¢ = o(a) and make a change of coordinate
r=1y-+ UyQ.

This transformation is invertible in some neighborhood of the origin, and its inverse

can be found by the method of unknown coefficients:
y = — ox® + 202 + O(z").

Using the previous transformation and its inverse, we get

§=py+ (a+op—op?)y* + (b+20a — 20u(opn+ a) + 202 1%)y* + O(y*).
Setting
a(a)
o) =
= ) - ala)

Since 1%(0) — p(0) = 2 # 0, the quadratic term can be “killed” for all sufficiently
small |a|. And we get

. 2a?
J=py+ b+ 2 M)y?’ +0(y") = =1+ a)y + c()y’ + O(y"),

where ¢(a) is a smooth function such that

(0) = (0) + H(0) = § (a0, 0 +  ra(0,0),
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So ¢(0) # 0 since 1 (f2z(0,0))* + £ frez(0,0) # 0. Take

The system takes the desired form:
E=—(1+a)E+ s+ 0.

Where s = sign ¢(0) = 1.

Lemma 2.7. [5] The map
v —(1+ )+ 2° + Oz
15 locally topologically equivalent near the origin to the map

v —(14 ) + 2

We arrive to the following general result:

Theorem 2.8 (Topological normal form for the flip bifurcation). [5/

Any generic, one-parameter system

x = fz, p)

having at pn = 0 the fized point xg = 0 with A = f,(0,0) = —1, is locally topologically

equivalent near the origin to one of the following normal forms:

£ —(1+ )€ + 5.

Consider the flip bifurcation case for any n-dimensional map
T=Ar+G(x), R (2.5.5)

where G(x) = O(]|z||?) is a smooth function and its Taylor expansion is

mﬂzém%@+%m@@@+0mfm
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where
Z |n o(Try;)
Pt 877 8
and .
Jf Y, 2 TiYkzj)-
And the Jacobian matrix A has the eigenvalue A = —1 and the corresponding critical

eigenspace T° is one-dimensional and spanned by an eigenvector ¢ € R" such that
AG = M\j. Let p € R™ be the adjoint eigenvector, that is, ATp = \p, where AT is
the transposed matrix. Normalize p with respect to ¢ such that (p,q) = 1. Let T°*
denote an (n—1)-dimensional linear eigenspace of A corresponding to all eigenvalues
other than A. Note that the matrix (A — AI,) has common invariant spaces with
the matrix A, so we conclude that y € T** if and only if (p,y) = 0.

Any vector z € R™ can be decomposed as

T=ug+y
where ug € T¢, y € T*" and
u=(p,x).

In the coordinates (u,y), the map (2.5.5) can be written as
U= Au+ (p,G(ug +v)),

§=Ay+Gug+y) — H,Gui+y))q.
Using Taylor expansions, the last two equations can be written as
1
U= \u+ 5u +u(b,y) + ~ou® + ..
- 6 (2.5.6)
Ay + —au® + ...
2
where u =R, y € R", §, 0 € R, a, b € R" and (b,y) = >, bjy; is the standard

scalar product, and can be expressed as

y

(b, y) = (b, B(¢,))-
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The center manifold of (2.5.6) has the representation

1
y="V(u)= §U)QU2 + O(u?),

where wy € T C R™, so that (p,ws) = 0. The vector wy satisfies

(A—IT)ws+a=0.

We have A = 1 is not an eigenvalue of A, so the matrix (A — I,,) is invertible in R™.

Thus, we have
Wo = —(A — [n)*la

and the restriction of (2.5.6) to the center manifold takes the form

a:—u+%&ﬂ+éw—3@4A—hrm»ﬁ+omﬁ

where 6 = (p, B(¢.q)), o = (p,C(q.q,q)) and a = B(q, q) — (p, B(¢. 9))q.

Using the identity
.1

the restricted map can be written as

(0)u? + b(0)u® + O(u?)

|

|
<
+
IS

U
where .
CL(O) = §<ﬁ7 B(qAJ é))?

and

1 1

H0) = <6, C(d0.0)) — (6 B@. D)) ~ (6. Bd, (A~ 1) Bl

6

The map (2.5.7) can be transformed to the normal form
§=—E+ (08" +0(¢"

where

(2.5.7)

))-
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Thus,the critical normal form coefficient ¢(0), allows us to predict the direction of

bifurcation of the period-two cycle. ¢(0) is given by the following invariant formula:

(0) = 56 Cl6,0,0)) — (5, B, (A~ 1) B, )

If ¢(0) > 0, then a unique and stable period-two cycle bifurcates from the fixed point
at the bifurcation point. [5]

2.6  Bifurcation of two-dimensional maps

In two-dimensional maps case we have a new bifurcation, the Neimark-Sacker bifur-
cation. In addition to the previous types of bifurcation. This section will contain

details about Neimark-Sacker bifurcation.

For two-dimensional maps non-hyperbolic fixed points are those where the Ja-

cobian matrix has eigenvalue on the unit circle.

Let
f('ruu)7 'TER27 ,U/ER

be a C" one-parameter family of two-dimensional maps, where » > 6. with fixed
point (z,p*). If (z,p*) # (0,0) we transform this fixed point to the origin. Let
A = Jf(0,0) be the Jacobian matrix of f(z,u) with p(A) = 1. Then we consider

the following three cases:

1. If A has one real value equal to 1, then we have one of the following types
of bifurcation (saddle-node bifurcation, pitchfork bifurcation, or transcritical

bifurcation ).
2. If A has one real value equal to —1, then we have a period-doubling bifurcation.

3. If A has a pair of complex conjugate eigenvalues of modulus 1, then we have

the Neimark-Sacker bifurcation.



2. Bifurcation of fixed points 35

[10]

We saw in chapter 1 that the stability region in the trace-determinant plane
is enclosed the lines det(A) = tr(A) — 1, det(A) = —tr(A) — 1, and det(A) = 1,
where A is the Jacobian matrix at the fixed point. The following theorem shows the

importance of those lines in studying the bifurcation of two-dimensional maps.
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Theorem 2.9. [10] Consider the two-dimensional map
x> f(z,u), x€R, pek.

Let (z, p*) be a fized point of f(x, ) and A = Jf(Z,u*). Then the following state-

ments hold:

1. If det(A) = tr(A) — 1, then the eigenvalues of A are A\; = det(A) and Xy = 1.

2. If det(A) = —tr(A) — 1, then the eigenvalues of A are A\ = —det(A) and
Ay = —1.

3. If [tr(A)|—1 < det(A) and det(A) =1, then A has a pair of complex conjugate

e where 6 = cos™L (A,

etgenvalues \j o = 5

Proof: Consider the map f(x, ) with Jacobian matrix A = J f(z, u*).
We have

At =

tr(A) £ /(tr(A)?2 — 4det(A)
2

1. Let det(A) =tr(A) — 1. Then
tr(A)? — ddet(A) = (det(A) — 1)* > 0.

So

. det(A) + 1 £ \/(det(A) —1)*  det(A)+ 1+ (det(A) — 1)
b2 2 B 2

This implies that
)\1 = det(A), )\2 =1.

2. Let det(A) = —tr(A) — 1. Then
tr(A)? — ddet(A) = (det(A) — 1)* > 0.
So
—det(A) — 1 £ \/(det(A) — 1)  —det(A) — 1= (det(A) — 1)

Ao = =
1,2 5 5
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This implies that
)\1 = —det(A), )\2 = —1.

3. Let |tr(A)| — 1 < det(A) and det(A) = 1. Then
tr(A)? — ddet(A) = tr(A)* — 4 < (det(A) +1)* —4 = 0.

This implies that A has a pair of complex conjugate eigenvalues

tr(A) £ \/4det(A) — (tr(A))?
5 .

Ao =

Since det(A) = 1 we have

tr(A) £ /4 — (tr(A))?

Ao = 5

Thus, A\;2 = re*® where r = [A\j5] = 1 and 6 = tan™! (T

cos™! <”(2A)>.

Corollary 2.9.1. [10] Let
v flo,p), r€R* peR (2.6.1)

be a one-parameter family of two-dimensional maps, with fived point (Z,u*) and
A= Jf(z,p*). Then the following statements hold:

1. If det(A) = tr(A) — 1, then the system (2.6.1) undergoes a saddle-node bifur-

cation.

2. If det(A) = —tr(A) — 1, then the system (2.6.1) undergoes a period-doubling

bifurcation.

3. If [tr(A)| — 1 < det(A) and det(A) = 1, then the system (2.6.1) undergoes a

Neimark-Sacker bifurcation.
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2.7 The Neimark-Sacker bifurcation

The Neimark-Sacker bifurcation exists when we have a pair of complex conjugate
eigenvalues of modulus 1.

Any map undergoes a Neimark-Sacker bifurcation has a unique closed invariant
curve bifurcates from the fixed point as the bifurcation parameter passes through
zero. The closed invariant curve can be stable or unstable as the bifurcation is

supercritical or subcritical, respectively.

2.7.1 The normal form of the Neimark-Sacker bifurcation

Consider the following two-dimensional discrete-time system depending on one pa-

rameter:
ny (1440 Cf)S(Q) —sin(0)\ [ (i s?) C?S(@) —sin(@)\ fa —=b\ [z
To sin(f)  cos(0) To sin(f)  cos(0) b a To
(2.7.1)
where 1 is the parameter, 0 = 6(u), a = a(p), and b = b(u) are smooth functions,

and 0 < 0(0) < m, a(0) # 0.

This system has the fixed point x1 = x5 = 0 for all p with Jacobian matrix

cos(f) — Sin(@))

A={+u) <sin(0) cos(6)

The matrix has eigenvalues A\ 5 = (14 u)e*?, which makes the map (2.7.1) invertible
near the origin for all small |u|. We can see that the fixed point at the origin is
non-hyperbolic at p = 0.

To analyze the corresponding bifurcation, introduce the complex variable
=11 +iTy, Z =121 — iy, |2]* = 20 + 107,
and take d = a + 1b. The equation for z is

2 €P2(14 p+d|z|?) = az + 2|z
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where o = a(p) = (14 p)e?®™ and ¢ = ¢(u) = e?Wd(u) are complex functions of
the parameter u.

Using the representation z = pe’?, we obtain for p = |z|

p = pll 4+ d(p)p?|.

But

2a d(p)[?
(1) 2+ L)‘zpzl =1+ p+a(u)p* +O0(p?).

\1+u+d(u)p2l=(1+“>\/l+1+u (1+ p)

So we get the following polar form for (2.7.1)

p = p(L+ p+a(p)p®) + p*Ru(p),
@ = o+ 0(u) + p*Qulp)-

Where R and @ are smooth functions of (p, ). Bifurcations of the systems’ phase
portrait as p passes through zero can easily be analyzed using the latter form, since
the mapping for p is independent of .

The first equation

@ = o+ 0(1) + P*Qulp)

defines a one-dimensional dynamical system that has the fixed point p = 0 for all
values of p. The point is linearly stable if u < 0; for ¢ > 0 the point becomes
linearly unstable. The stability of the fixed point at i = 0 is determined by the sign
of the coefficient a(0). Suppose that a(0) < 0; then the origin is (nonlinearly) stable

at ;= 0. Moreover, the previous p-map has an additional stable fixed point

for u > 0.
The ¢-map describes a rotation by an angle depending on p and p; it is approx-
imately equal to 6(u). Thus, we obtain the bifurcation diagram for the original

two-dimensional system (2.7.1) by superposition of its polar form.

The system always has a fixed point at the origin. This point is stable for u < 0

and unstable for g > 0. The invariant curves of the system near the origin look like
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the orbits near the stable focus of a continuous-time system for p < 0 and like orbits
near the unstable focus for ;1 > 0. At the critical parameter value ;= 0 the point
is nonlinearly stable. The fixed point is surrounded for ;¢ > 0 by an isolated closed
invariant curve that is unique and stable. The curve is a circle of radius po(u). All
orbits starting outside or inside the closed invariant curve, except at the origin, tend
to the curve under iterations of (2.7.1). This is a Neimark-Sacker bifurcation.

This bifurcation can also be presented in (z7, 2, pt)-space. The appearing family of
closed invariant curves, parametrized by p, forms a paraboloid surface. The case
a(0) > 0 can be analyzed in the same way. The system undergoes the Neimark-
Sacker bifurcation at g = 0 but there is an unstable closed invariant curve that

disappears when p crosses zero from negative to positive values.[5]

2.7.2  Generic Neimark-Sacker bifurcation

We shall now prove that any generic two-dimensional system undergoing a Neimark-

Sacker bifurcation can be transformed into the form (2.7.1). Consider a system
T = f(x7u)7 T = <I1>x2)T € R27 2 eR

with a smooth function f, which has at 4 = 0 the fixed point z = 0 with simple
eigenvalues \o = e 0 < §, < m. By the Implicit Function Theorem, the
system has a unique fixed point xo(u) in some neighborhood of the origin for all
sufficiently small |u|, since A = 1 is not an eigenvalue of the Jacobian matrix. We
can perform a parameter-dependent coordinate shift, placing this fixed point at the
origin. Therefore, we may assume without loss of generality that z = 0 is the fixed

point of the system for || sufficiently small. Thus, the system can be written as
z— A(p)x + F(x, p) (2.7.2)

where F' is a smooth vector function whose components Fj o have Taylor expansions
in z starting with at least quadratic terms, F'(x, 1) = 0 for all sufficiently small |p|.

The Jacobian matrix A(u) has two multipliers

AL = r(,u)eﬂ@"(“)
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where 7(0) = 1, ¢(0) = 0y. Thus, r(u) = 1 + B(u) for some smooth function 5(u)
with 5(0) = 0. Suppose that §’(0) # 0. Then, we can use [ as a new parameter
and express the multipliers in terms of 3: A (3) = A(p), A2(8) = (i), where

AB) = (1 + B)e”?
with a smooth function (/) such that 6(0) = 6.

Lemma 2.10. /5] By the introduction of a complex variable and a new parameter,
system (2.7.2) can be transformed for all sufficiently small |u| into the following
form:

2= ANB)z+g(z 2, 5), (2.7.3)

where € R, z € C, \(B) = (1+3)e?P) | and g is a complex-valued smooth function
of z, z, and [ whose Taylor expansion with respect to (z,z) contains quadratic and

higher-order terms:
- 1 kol
g(’Z?Z’ﬁ): Z mgklz Z,

k+1>2

withl, k=0, 1, 2, ...
Lemma 2.11. [5] The map

Z s Az A+ %22 + g2z + %22 +O(]z*) (2.7.4)

where A = MB) = (1 + B)e®®), g;; = gi;(B) can be transformed by an invertible

parameter-dependent change of complex coordinate

h h
z=0v+ %02 + h11vv + %@27

for all sufficiently small ||, into a map without quadratic terms:
v = Ao+ O(Jv]?),

provided that
e £ 1, 30 £ 1.
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Proof: The inverse change of variables is given by

h hoa
U:z—%f—huzz—T +O(|2]*).

Therefore, in the new coordinate v, the map (2.7.4) takes the form

_ 1 1 _
D= )\v+§(920+()\—Az)hgo)v2+(911+(>\—|/\|2)h11)vv+§(gog+()\—)\2)h02)v2—l—0(]v|3).
Thus, taking
920 - g11 [ go2
/\—A27 11 |)\|2—A7 11 5\2_)\7

we “kill” all the quadratic terms in (2.7.4). These substitutions are valid if the

hao =

denominators are nonzero for all sufficiently small |3| including 8 = 0. Indeed, this

is the case, since
A2(0) — A(0) = e (e — 1) # 0,
AO)* = A(0) =1 — ™ #0,
A2(0) — A(0) = e (e — 1) £ 0,

due to our restrictions on 6. |

Assuming that we have removed all quadratic terms, let us try to remove the

cubic terms.
Lemma 2.12. [5] The map

g30 53 g21 227 g12 552 go3 _3 4
A =
z 24+ = : TSRt % + O(|2]%)

where A = M(B) = (1 + B)e®® | g = g:;(B) can be transformed by an invertible

parameter-dependent change of coordinates

h30 3+h21 21_]+h12 _2+@_3

z—v+6 5 9 61},

for all sufficiently small ||, into a map without quadratic terms:
v = Av + cv?o + O(Jv]h),

provided that
622'90 #17 641'90 7£1
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Proof: The inverse transformation is

h h h
v=1z— %f - %222 — h1922* — %23 +0(]z]h).
Therefore
. 1 1 _
U= A\v+ 6(930 + (A — )\3)h30)1}3 + 5(921 + (A — )\|)\|2)h21)v2v—|—

1 _ 1 _
5(912 + (A = AAP)hig)vo® + 6(903 + (A = A ho3)7* + O(Jv|*).

Thus, taking

B — 30 912 _ _9o3
30 )\3_)\7 12 A')\|2—)\’ 03 AS—A’

we can annihilate all cubic terms in the resulting map except the v2v-term, which
must be treated separately. The substitutions are valid since all the involved denom-

inators are nonzero for all sufficiently small || due to the assumptions concerning

6.

One can also try to eliminate the v?7-term by formally setting

g21

hot = —————.
S AR)

This is possible for small § # 0, but the denominator vanishes at § = 0 for all
0. Thus, no extra conditions on 6y would help. To obtain a transformation that is
smoothly dependent on [, set hy; = 0, that results in

)

C1 2

Lemma 2.13 (Normal form for the Neimark-Sacker bifurcation). The map

z Az 4+ %22 + g1122 + %22 + %23 + %222 + %z? + %23 +O(|2]Y)

where A = A(8) = (1+ B)e™®), g; = g5(8), and 6y = 6(0) is such that ™ £ 1 for
k=1, 2, 3, 4, can be transformed by an invertible parameter-dependent change of

complex coordinates, which is smoothly dependent on the parameter,
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hgo 2 _ hOQ _9 hg[) 3 h12 _9 h03 _3
— o4 202 4 hop 4 22y D80, 2 e 103
z v B (% 110V 5 (% 6 v B v 6 v,

for all sufficiently small ||, into a map with only the resonant cubic term:
v = Av + cv?o + O(Jv]h),

where ¢; = ¢1(B).

The truncated superposition of the transformations defined in the two previous
lemmas gives the required coordinate change. First, annihilate all the quadratic
terms. This will also change the coefficients of the cubic terms. The coefficient
of v?v will be %g}m, instead of %gm. Then, eliminate all the cubic terms except
the resonant one. The coefficient of this term remains %gm. Thus, all we need to
compute to get the coefficient of ¢; in terms of the given equation is a new coefficient
%5721 of the v?7-term after the quadratic transformation. The computations result

in the following expression for ¢;(f):

A—3—2) 2 2
o = 920911 ( > ) 4 |911|7 I |go2| 4 @’
202 =N (A —1) I1—X 2(02—=X) 2

which gives, for the critical value of ¢,

920000911 (0)( Ao =3 =2X) | g (O | lg02(0)]* | 21(0)
a0 = N — ) = 1) = 20— 2 0 27

6o

where \g = ¢

We now summarize the obtained results in the following theorem.

Theorem 2.14. [5] Suppose a two-dimensional discrete-time system
x»—>f(:c,,u), $€R27 MER

with smooth function f which has, for all sufficiently small |u|, x = 0 as a fized
point with eigenvalues
Ara(p) = r(p)e e
where 1(0) =1, p(0) = 6.
Let the following conditions be satisfied:
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1. 7'(0) # 0;

2. e L1 fork =1, 2, 3, 4.
Then, there are smooth invertible coordinate and parameter changes transforming

<M>Hu+m<www>—mmm>eﬁ+
Y2 sinf(5)  cos() Y2

s (cos8(8) —sind(B)\ (al8) —b(B)\ (w1 )
1 2 O
@+y%mmm mﬂ@)@@ wm)@)+(w”

with 6(0) = 0y and a(0) = Re(e=%c,(0)), where ¢,(0) is given by the formula (2.7.5).

the system into

(2.7.6)

Proof: The only thing left to verify is the formula for a(0). Indeed, by Lemmas 2.10,
2.11, and 2.12, the system can be transformed to the complex Poincare’ normal

form,

v = AB)v + e (B)vfo]? + O([v]*),

for A(8) = (1 + B)e?®. This map can be written as
v D14 B+ dB)of)o + O(lvf*),

where d(f) = a(B) + ib(8) for some real functions a(5), b(5). A return to real
coordinates (y1,¥2), v = y1 + iys, gives system (2.7.6). Finally,

a(B) = Re(e Py (B).

Thus
a(0) = Re(e™¢(0).
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Theorem 2.15 (Generic Neimark-Sacker bifurcation ). [5] For any generic two-

dimensional one-parameter system

x> f(z, 1)

having at ;= 0 the fived point o = 0 with complex eigenvalues Ay o = X% there is
a neighborhood of x¢ in which a unique closed invariant curve bifurcates from xq as

1 passes through zero.

Consider the map
t=Ar+G(z), x € R (2.7.7)

where the Jacobian matrix A has a simple pair of complex eigenvalues of modulus

+1i60p

one, \jo = e, 0 < fy < 7 and these are only eigenvalues with |A\|] = 1 and

G(x) = O(]|z]|?) is a smooth function and its Taylor expansion is
1 1

where

and

ZB YUY, 2 o\ T1Yrzj)-

Z anlankanj |7] ( ])
Let ¢ € C" be a complex eigenvector corresponding to A;:
AG=e"q, AGg=e g,
Introduce also the adjoint eigenvector p € C™ having the properties
ATﬁ — 6—1’90]57 AT _ 6290}7,
and satisfying the normalization
(p,q) =1

where (p,q) = >.r_, Pidi is the standard scalar product in C". The critical real

eigenspace T corresponding to A; 5 is two-dimensional and spanned by { Re(q), Im(q)}.
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The real space T corresponding to real eigenvalues of A is (n — 2)-dimensional.
y € T** if and only if (p,y) = 0. Note that y € R" is real, while p € C".

Any vector z € R™ can be decomposed as
r=z4+ZG+y

where z € C!, 2§+ 2§ € T¢ and y € T*. The complex variable z is a coordinate on

T¢. We have

In these coordinates, the map (2.7.7) takes the form

F=e%% + (p, G2+ 24+ 1))
J=Ay+G(2q¢+z4+y)— (p,G(z4+ 24+ y))d — (P, G(24 + 24 + y))q.

The previous system can be written as

. . 1 1 1
5 =¢fy 4+ §G20z2 +Guzz + §G0252 + §G21225 +(G10,9)z + (G0, y)Z

- 1 1 1
Yy = Ay + §H2022 + HHZZ -+ §H0252 + §H21225,

where GQ(), GH, GOQ, G21 c (Cl and G01, Gl(], Hij € C™ and the scaler pI‘OdIlCt is
in C™.

The complex numbers and vectors can be computed by

GQO = <ﬁaB((jaCj)>> Gll = <paB(d7§)>7 GOZ = <ﬁaB(é7 é»a GQI = <]370(Q7d7§)>
and
HZO = B(qud) - <ﬁ7 B(Cja q))q - <]§7 (Cjag»éa
Hll = B(daq:) - <p7B(qA7q:>>qA - <]§,B(d’q7>>q:’
and

(Gro,y) = (0, B(¢: ), (Gow,y) = (B, B(q,y))-
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The center manifold in the previous system has the representation
. 1 2 N -
Y =V(z,2) = 57)202’ +v112Z + 50022
where (G, v;;) = 0. The vectors v;; € C" can be found from linear equations
(emol — A)’U20 = Hgo,
(I - A)Un = Hyi,
(6_2i901 - A)U()Q = HOQ.

These equations have unique solutions. The matrix (I — A) is invertible because 1

is not an eigenvalue of A. If
€3i90 7£ 1
the matrices (%% — A) are also invertible in C" because 2% are not eigenvalues

of A. Thus, generically the restricted map can be written as
ST 2 ol 51 > s ~1
z=e"Z+ §G20Z + Gllzz + QGOQZ + §[G21 + Q(p, B(q, ([ — A) H11)>+
(p, B(q, (e*I — A" Hy))])2%2 + ...

taking into account the identities

1A 1 A i0 1A e~ N 1z 1 =
(I-A)"g= mqv (] — A)'g = cifo — 1% (I-A)"q= 1_ ewoq,
and i
(eZZGO[—A)_léz e C;
ei@o _ 1 :
Also z can be written using the map
) 1 .
z = GZGOZ + ngjzkéj, (278)
k1>2 -

(b, B(g, (e*™ = A)7'B(4,))) +

2 ~ A V|2 et ~ =~ AN (2
1o |0 B(& DI — 1, B(@ )"
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As "% £ 1, the map (2.7.8) can be transformed into the form
z=e"z(1+d(0))|"]

where a(0) = Re{d(0)}, that determines the direction of bifurcation of a closed

invariant curve, can be computed by formula

€—i90g21 (1 _ e?’i@o)e—%@o 1 ) 1 N
a(0) = Re ( 5 > — Re ( 2(1 — eifo) 920911) - 5’911‘ - Z’Qo2| .

This compact formula allows us to verify the non-degeneracy of the nonlinear terms

at a non-resonant Neimark-Sacker bifurcation of n-dimensional maps with n > 2.[5]



3. DYNAMICS OF Xyy1 = prdi—

In this chapter we consider the second order, quadratic rational difference equation

o+ /an—l
il = L n=0,1,2, .. 3.0.1
Tl = Ba2x2 4+ Cxyy " ( )

with positive parameters «, 3, A, B, C, and non-negative initial conditions.

We will focus on the dynamic behavior of the positive fixed point and the type
of bifurcation exist where the change of stability occurs. Then we introduce some

Matlab codes that use our results.

3.1 Change of variables

Consider Equation (3.0.1), let

A
Ty = ——Up.
VB’
Then v
A
Tnt1 = ﬁyn—&—la
and

n—1 \/E n—1-

So Equation (3.0.1) becomes

VAL et BYyn
VB A+ BLy? + \/%yn—l
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VB o+ By,
Yn+1 =
VAAL + 2 4+ C¥y, 1)

VB
O‘\/\/% + %yn—l

Yn+1 =

Letp:ag,q:%,andr:\/%. We get

D+ qYn—1
1 + y721 + rynfl ’

Yntl = n=20,1, 2, ..

3.2 Equilibrium points

In this section we prove the existence of the unique positive equilibrium point of the

rational difference equation

p+qyn—1
— . n=0 1,2 .. 3.2.1
It = + Y2+ TYn1 (3:2.1)

with positive parameters p, ¢, r, and non-negative initial conditions. And we give

a Matlab code to find it.

To find the equilibrium point, we solve the following equation

g _ptay
L+y>+ry
hence
PHrF+(1—qg—p=0. (3.2.2)

To prove the existence of the positive fixed point we use the following theorem.

Theorem 3.1 (Descartes’ rule of signs). Let P(x) be a polynomial with real coef-
ficients. Then the number of positive zeros of P is either equal to the number of

variations in sign of P(x) or less than this by an even number.
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By Descartes’ rule of signs Equation (3.2.2) has one positive root, which is the

unique positive equilibrium point of Equation (3.2.1).

To find the roots of Equation (3.2.2) we use the following code.

Ssyms X ¢ r p
t=1[1r (1-q) -pl;
1= roots(t)

And then we choose the positive root to be .

3.3 Linearized equation

To find the linearized equation of (3.2.1) about the equilibrium point 7, let

 p+aqy
f(x’y)_1+a:2+ry
of —2x(p + qv)
Sy = ———5
Ox (1+ 22 +ry)
OF 7.5y = —2¥p+ap)
dx " (1472 +rg)
Since B
jo Pt
L+y*+ry
we get
of _ _ —2y°
= (0,Y) =
ox 14+ 92 +ry
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Similarly,

of g+ 2 +ry) —r(p+ qv)
_(xvy) - 9 2
dy (1422 +ry)

of

_ L+3+ry) —r(p+qy
a_y(y’wIQ( g +ry) —rlp+qy)

(1472 +ry)°

of . q—r1y
(0.9 =75 =
dy L+y*+ry
The linearized equation is
—2y° q—ry

—UYn—1-

n = T 5 . n+_—
I N R T I 2 4y

And the characteristic equation is

20" 4=y _
L+ +ry 1+§2+ry

A2+

3.4 Local stability

To check when the unique positive equilibrium point g of Equation (3.2.1) is locally
asymptotically stable, let

—2 4=y
Oa=——= - 0="—"="T"-
L+ +ry L+92+ry

A sufficient condition for asymptotic stability of § is |a| < 1 — b < 2. Which is

equivalent to

-b<1, (3.4.1)
and |a| <1—b. (3.4.2)
(3.4.1) always holds,
q—-ry 1

1Pty
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since

rj—q<1+y+ry
and hence,

1+4°+q>0.
Which always holds.
And (3.4.2) is equivalent to
L, _
e A
SO
20 <147 +ry+rj—q

and hence,

q<1—7y"+2ry.

So (3.4.2) holds when ¢ < 1 — % + 2r7.

Thus ¢ < 1 — 42 + 2r§ is a sufficient condition for asymptotic stability of ¢ .

3.5 Invariant intervals

Theorem 3.2. Consider the difference equation (3.2.1), and {y,}5°_, as a solution.

Then the following are invariant intervals:

1. [0,q] when r > 1, and q > p.

2. 10, 2] when pr < q.
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Proof. 1. Assume that r > 1, and ¢ > p, and yn_1, yny € [0, q] for some integer
N.

P+ qyn-1
L+ y% +ryn
< P+ qYn-1

1+rynv—1
< q+ qYyn—1 7

I +yn_

Yn+1 =

=q
And working inductively we complete the proof.

2. Assume that pr < ¢, and yn_1, yn € [0, Z] for some integer N.

P+ qyn—1
L+ yk +ryva
(% +yn-1)
(24 2yk +yn-1)

q(; +yn-1)
~r(:+yna)
q
T

YN4+1 =

And working inductively we complete the proof.

3.6 Boundedness

We will show that every solution of the difference equation (3.2.1) is bounded. Let
{yn}>2 _; be a solution of (3.2.1). then we have
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forn=0,1, 2, ...
p“_qynfl
0<Yps1 =
Yntl = ey T
_ Y% n qYn—1
T+ 24+ rys1 1492 +7Yn
<P W
o 1 T"Yn—1
,

Hence the solution is bounded, since it is bounded from below and from above.

3.7 Period two cycles

In general, we say that a solution {y,}>2 ; is of prime period two if the solution

eventually takes the form:

e O, 0, 0,0,
where ¢ and 1 are positive, and ¢ # 1.

Theorem 3.3. Assume that Equation (3.2.1) has a two periodic cycle {¢p, 1}, where
¢ and Y are positive, and ¢ # 1. Then q must satisfy the following conditions:

q<1+r(p+) (3.7.1)

qg>1— (3.7.2)

Proof: Assume {¢, 1} is prime period two solution of Equation (3.2.1), then ¢, v
satisfy :
o P +q9
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and s
~ ptgq
w——1+¢2+w. (3.7.4)
From Equation (3.7.3) we have
¢+ pv? + ¢ = p+ qo, (3.7.5)
and from Equation (3.7.4) we have
U+ 1pe? +rp? = p+ q. (3.7.6)
Subtracting Equation (3.7.6) from (3.7.5), we get:
(0 =) = ¥o(d — ) +1(¢* — %) = q(¢ — ).
Since ¢ # 1), the last equation can be divided by (¢ — 1), and we get
1—vo+r(p+1)=q. (3.7.7)
So
g =1+7r(@+1)—q.
But ¥¢ > 0, so
hence

q<1+7(p+).

Which is the first condition. From (3.7.7) we get also:

oY +q—1
o=
r

But ¢ +1¢ > 0, so

—1

Y +q -0,
r

since r > 0 we have

hence

q>1— 1.
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Which completes the proof.

To study the stability of the two cycle {¢, 1} (if it exists), let

“n = Yn—1,
and

Un = Yn-
We get the following system

Zn+1 = Un

P+ qzn
Uppg = ——t =0, 1, 2, ...
T2, oz,

Let F be a function on (0,00) x (0, 00) defined by

z v
F = o .
v 1—&{]1)2({&-7“2

< )
w
is a fixed point of FQ(Z, v), where

gz
F2 (Z) _ (Fl(U,Z)> _ ( 14{;1)23-7"2 ) ] (378)
v Fy(v,z) M%

Now we find the Jacobian matrix of F?(z,v), we have

Then

OFy,  q1+v*+rz)—r(p+qz)

0z (1+v24rz)?

)

oF1  —2(p+qz)v

v (1+v2+rz)?

0F, _ —2(p + qv) 2LED F (2, v)
0z (14 (Fi(v,2))* +rv)?
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and

v (14 (Fy(v,2))* + 1v)2

The Jacobilan matrix is

OF,  q(1+ (Fi(v,2))* +71v) — (p+ qv) 222D Fy (2, 0) + 1)

q(1+7(12+T2z)—T§123+q2) (—2(117;r(1Z))1}2
) . 1+v2+rz 14+ve+rz
TE(2,0) = | a0 25D By () (4B (0,2))+r0)— (o a0) 22EHED By () +1)
(1+(F1 (v,2))°+rv)2 (1+(F1 (v,2))°+rv)2
(e ge=yray
2 _ T2 4r T+y2+r
JE(2,0)| (o) = —2(p+q¢) Py q(1+¢2+r¢)+4¢%)2 —ri (1442 +1¢)
(1+424re) (1+¢2+rp) (1492 +re) (142 +r1))
> (4= 6)(q — )
q—7r q—rT
det(JF%(¢, 1)) = :
(JF(6, %)) (1+ Y2 +71¢)(1 + ¢% + 1)
and

(q—rd)(1+ ¢* +rp) + (¢ — rp) (1 + 4?4 ro) + 4¢*Y?
(1 +92+7ro)(1+¢* +1¢) '

tr(JF*(9,v)) =

A sufficient condition for locally asymptotic stability of {¢, 1} is
tr(JF?)| < 14 det(JF?) < 2.

Which is equivalent to

det(JF?) < 1, (3.7.9)
tr(JF?) < 1+ det(JF?), (3.7.10)
—1 —det(JF?) < tr(JF?). (3.7.11)

(3.7.9) holds when

(a—7r¢)(q—r¢) < (1+¢* +r¢)(1 +¢* +r¢h),

So
(g—710)(q— 1) — (L+¢* +r) (1 + ¢* +1¢) < 0.



a+BTn—1 60

3. Dynamics of xp41 = AFBr24Can 1

And (3.7.10) holds when

(q—1d)(L+ >+ 1Y) + (g — ) (1 4+ U + 1ro) + 4¢%)?
(I +92+7ro)(1+¢* +1¢)
(g —r9)(qg—1v)
L+ 02 +1rd)(1+ @2+ 1)’

<1+

SO

(q—rd) 1+ ¢* +rp) + (g — r) (1 + ¢* + r¢) + 4¢°¢?
< (L4 +71d) (14 ¢* +1¢) + (¢ — 1) (g — 10),

and hence

(q—1¢)(1+ ¢* +rp) + (¢ — r0) (1 + 4% + 1) + 4¢°Y*
—(L+ >+ 7o) (L+¢* + 1) — (¢ —r¢) (¢ — rp) < 0.

(3.7.11) always holds since

(¢ —ro)(1+¢° + 1) + (g — ) (1 + % + rd) + 4%

(1+92+719)(1+ @2+ 1)
51 (¢ —rd)(q— 1)
(L+ 92 +7ro)(1+ ¢ +1¢)

implies
—1—¢" =9 = 5¢*° — ¢* —r*¢p — 29 — q(¢” +¢?) <0
which always holds.

3.8 Global stability

In this section we investigate a result about the global stability of the positive

equilibrium point of (3.2.1) 7.

r244—r?

Theorem 3.4. Assume pr < q < == . Then the positive equilibrium point iy

on the interval S = [0, 2] is globally asymptotically stable.
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Proof: this proof can easily be done depending on Theorem (1.7). Assume pr < g,

and consider the function

 ptay
f<x7y)_ 1+ZL‘2—|—Ty

Note that S is an invariant interval and all non-negative solutions of Equation
(3.2.1) lie in this interval, and f(z,y) on S is non-increasing function in z, and

non-decreasing in y.

Now we need to show that the difference equation (3.2.1) has no solution of

prime period two in S.

For seek of contradiction assume that the difference equation (3.2.1) has a

solution of prime period two {¢, 1} € S. Then ¢ must satisfy

q> 1_¢¢7
but since {¢, v} € S
2
=gy >1-L
T
hence )
q
q> 1_7’_27

. . . . . 2 _p2
which is a contradiction, since ¢ < ™=

So Equation (3.2.1) has no solution of prime period two in S. Then both
conditions of Theorem (1.7) hold, then (3.2.1) has a unique positive equilibrium
point y € S, and it is globally asymptotically stable. [
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3.9 Matlab Codes and numerical discussion 1

In this section we introduce Matlab code that uses our results, and then we insert
some examples.
Matlab code for finding the fixed point and its stability and solution

behavior:

syms Xx;
r= ; %r wvalue
p=; %p wvalue
q= ; %q value
t=1[1 1 (I-q) —p];
= roots(t)
if 1(1)>0
"The positive fixed point is
y=1(1)
else if 1(2)>0
"The positive fixed point is
y=1(2)
else if 1(3)>0
"The positive fixed point is
y=1(3)
end
end
end
U=(1+y " 2+r*y)
a=(2xy " 2)/(14+y 241xy)
b=(q—rx*y)/(1+y 2+r*y)
if q<(l—y 242%rx*y)
if q<(143%y " 242x1rx*y)
"The positive fixed point is asymptoticlly stable’

end
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else
"The positive fixed point is not asymptoticlly stable’
end
C=p*T
m=(((rx(r"24+4)°(0.5))-r"2)/2)
if go=c && gq<=m
"The positive fixed point is globally asymptoticlly
stable’
n="70;
x=zeros (n+1,1);
t=zeros(n+1,1);
x(1)=0.1;x(2)=1.1;
tt (1)=0;
for i=2:n
t(1)=i—1;
) (1) =(prarx (i 1)) /(14 (x (i) 24 rax (i ~1)) ;
end
t (n+1)=n;
plot(t,x,t,x,’.") xlabel( 'n—iteration’) ,ylabel( ’x(n)’)
axis ([0 70 0 10]), title (’The behavior of the solutions’)
else
"The positive fixed point is not globally
asymptoticlly stable’
n="70;
x=zeros (n+1,1);
t=zeros(n+1,1);
x(1)=0.1;x(2)=1.1;
tt (1)=0;
for i=2:n
t(1)=i—1;
x (i) =(prarx (i 1)) /(1+(x (i) 24 rax (i ~1)) ;
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end

t (n+1)=n;
plot(t,x,t,x,’.") xlabel( 'n—iteration’) ,ylabel( ’x(n)’)
axis ([0 70 0 10]), title (’The behavior of the solutions’)

end

Example 3.1. Consider the difference equation (3.2.1), take p =4, ¢ =5, r = 0.5.
Equation (3.2.1) becomes

4 + 5yn—1
14+y2+0.5y, 1

Ynt1 = n=20,1, 2, ...
With initial conditions yo = 0.1, y; = 1.1.
The theoretical positive equilibrium point will be y = 2.1786778129.

Theoretically the positive equilibrium point i is unstable since pr = 2 < q but
q > ™I ().3903882032.

Figure (3.1) shows that the positive equilibrium point is unstable.

unstable fixed point
10 : :

0 10 20 30 40 50 60 70
n-iteration

Fig. 3.1: The positive equilibrium point is unstable.
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And using the Matlab code we get the following output
| =
2.1787 + 0.00001
-1.3393 + 0.20531
-1.8393 - 0.2053i

ans = "The positive fixed point is’

y = 2.1787

U = 6.8360

a = 1.3887

b =0.5721

ans = "The positive fixed point is not asymptoticly stable’
c=2

m = 0.3904

ans = 'The positive fixed point is not globally asymptoticly stable’

The behavior of the solutions
10 - - - -

x(n)

0 10 20 30 40 50 60 70
n-iteration



a+BTn—1 66

3. Dynamics of xp41 = AFBr24Can 1

Example 3.2. Consider the difference equation (3.2.1), take p=0.5, ¢ =10.3, r =
0.5. Equation (3.2.1) becomes

0.5+ 0.3y,
Yooy = oI 1,
L +y: + 0.5yn—1

With initial conditions yo = 0.1, y; = 1.1.
The theoretical positive equilibrium point will be y = 0.4457850401.

Theoretically the positive equilibrium point  is stable since pr = 0.25 < q and
rvr244—r?
q < == =10.39.

Figure (3.2) shows that the positive equilibrium point is stable.

stable fixed point

1.5

0.5 fil 7

0 50 100 150
n-iteration

Fig. 3.2: The positive equilibrium point is stable.

And using the Matlab code we get the following output
| =
-0.4729 + 0.94767
-0.4729 - 0.9476i
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0.4458 + 0.0000i

ans = "The positive fixed point is’

y = 0.4458
U=1.4216
a = 0.2796
b =0.0542
ans = "The positive fixed point is asymptoticlly stable’
c = 0.2500
m = 0.5904

ans = "The positive fixed point is globally asymptoticlly stable’

The behavior of the solutions
10 T T v T

0w

(n)
o

] 10 20 30 40 50 60 70
r-iteration
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P+qyn71

3.10 Bifurcation of y, 1 = FEwyRw——

In this section we study the types of bifurcation that occur at ¢ = ¢* as ¢ is the
bifurcation parameter.

In order to convert Equation (3.2.1) to a second order dimensional system with

three parameters p, ¢, and r, let

Zn = Yn-1,
and

Up = Yn.
We get the following system

Zn+l = Up

P+ qzn
Upog = ——t =0, 1, 2, ...
T v2, + 1z,

This system has the unique fixed point (z,7)T = (,7)”. Convert this system in to

second dimensional map

F (’2) - (fl(z’v)> — ( y ) . (3.10.1)
v fa(z,v) Thits

Now we find the Jacobian matrix of F(z,v), we have

df
2.
df1
i
ofs  q(l+v*+7rz) —r(p+qz)
9z (1+v2+rz)? ’
and
Ofs  —2(p+gz)v

o (102 +r2)?
The Jacobian matrix is

0 1
JF(z,0) = q(1+v?4rz)—r(p+qz)  —2(p+qz)v

(14v2+rz)? (14+v2+rz)?
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0 1
JF(Z, U)’(g’g) = q—ry —242

L2ty TH2 4y

3. Dynamics of xp41 =

So B
o q—ry
det(JF(5,7)) = —————,
et(JF(y,9)) T 410
and )
tr(JF (i, 7)) = ——>——.
r(JF(5,9)) R

Theorem 3.5. The fized point (y,y) of the system (3.10.1) undergoes a saddle-node
bifurcation when q = 2ry + 35 + 1.
Proof: Saddle-node bifurcation happens when

det(J) =tr(J) — 1.

So the fixed point (y,y) of the system (3.10.1) undergoes a saddle-node bifurcation
if
det(JF(y,9)) = tr(JF(y,y)) — 1

or
a—ry _ 2
1+ +ry  1+y+ry
SO
_— i) ) _
—q+ry=-2y"—-1-y"—ry
thus
= 2ry + 37° + 1.
So saddle-node bifurcation happens if ¢ = 2ry + 35> + 1. [

Theorem 3.6. The fized point (y,y) of the system (3.10.1) undergoes a period-
. . . _ _ . 72—1
doubling bifurcation when q = 2rj — > + 1 if r > 3”2—27

Proof: Assume r > % Period-doubling bifurcation happens when
7

det(J) = —tr(J) — 1.
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So the fixed point (y,y) of the system (3.10.1) undergoes a period-doubling bifurca-

tion if
det(JF(y,9)) = —tr(JF(y,9)) — 1
or
q—ry —2y?

L+24+ry 1+ +ry
SO

—q+ry=20"—1—9"—ry
thus

qg=2ry—y* + 1.
Which is positive since r > % So period-doubling bifurcation happens if ¢ =
2rij — % + 1. [ |

Now consider Neimark-Sacker bifurcation which happens when

det(J) =1

and

-2 <tr(J) <2.
So the system (3.10.1) undergoes Neimark-Sacker bifurcation when

det(JF(y,9)) =1 (3.10.2)
and

-2 <tr(JF(y,y)) < 2.

Equation (3.10.2) holds if

9=y
L+y*+ry
SO
—q+rg=1+7"+r1y
thus

g=—(1+7).
Which is impossible since ¢ > 0. So the system (3.10.1) can not undergo Neimark-
Sacker bifurcation at (y,y).
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3.11  Direction of The Period-Doubling (Flip) bifurcation
In this section we will find the direction of Flip bifurcation of system (3.10.1) at
q=2ry—1y>+1.
We need at first to shift the fixed point (7, y) to the origin. Let
Wy, = Zp — Y, Uy = Vy — Y.

System (3.10.1) will be

Wp+1 = Up
P+ q(w, +7)
el = . —, n=20,1, 2, ..
U T un + 92+ r(wn - 3)
Or
Y1 =AY, +G(Y,), (3.11.1)
where
AZ( 0_ 1_2 >7Yn:<wn>7
=Ty —25° U
45241y 14+5%+ry "
and .
GY) = §B(Y Y) + C’(Y YY)+ O(||Y|| )
B{(Y.Y .Y,y y
B(Y,Y) = ISR I C(Y,Y,Y) = 11 YY)
By (Y)Y) Cy(Y)Y)Y)
where
Z 677 877] |77 0 ky])
and

(2,9, 2 Z 37713?7k577;|n o(T1ynz;)-

So Bi(v,¢) =0 and C1 (¢, 0,£) =0

—2r(q —ry)
(1+ 5%+ ry)?

—2(p+ qy)
(1 + 9% +ry)?

(V101)+ M(%%—F%%)

(1/12¢2)
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and

Co(v,¢,8) = %(%%&) W

2 + 3y —1) +4r(p — 6y
+ Ay (i/+y2)—krg§§p Y )(%425251 + Y212 + V102E2)

20y(p + qy) — 48¢*
(I1+92+ry)?

(V1018 + V10261 + Y201&1)

(th2282).

Now we find the eigenvectors of A and A” corresponding to the eigenvalue

A = —1 at the bifurcation point ¢ = 2ry — 7> + 1.

Let ¢ and p* be the eigenvectors of A and AT corresponding to the eigenvalue

A = —1 respectively. So we have
Ag = —§G, and ATp* = —p*.
Or

(A+DG=0 (3.11.2)
(AT + I)p* = 0. (3.11.3)

Equation (3.11.2) is equivalent to

—ry —27 ~ o '
Hts 1t ) \@ 0

Let ¢, = 1, from the first equation we get

Q1 +¢=0

. R 1
so ¢o = —1. Thus take ¢ ~ )
Note that in order to have a nonzero solution for (A + /)¢ = 0, the matrix

(A + I) must be singular. Which means that |A 4 | must equal to zero, so

—927? — ri
++1—%:
1+ 32 +ry 14+ 9> +ry
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T+ (1+ 72 )G = 0.

Thus, ¢ satisfies the second equation T

1+y2+ry

Now, consider Equation (3.11.3) which is equivalent to

—2y * ’
1 1.+>1+y;iry D2 0

Take p*, = 1, from the first equation we get

* q—”l"g

— = 2 9 =0
P 1+g2_’_r@p2

ry—q
s0 Py = W Thus take p* ~ (Hyiwg)‘

Note that in order to have a nonzero solution for (AT + I)p* = 0, the matrix

(AT 4 I) must be singular. Which means that |A” + I| must equal to zero, so
— 2472 — i
20 4=y
L+y2+ry L+y2+ry

Thus, p* satisfies the second equation p*; + (1 + 1+;2y<k - )p*y = 0.

Now, we normalize p* and ¢,

Wiy =
’ L+y*+ry

Take p = 1 (1:%5@> = ey = R

The critical eigenspace T corresponding to A = —1 is one-dimensional and
spanned by an eigenvector ¢. Let T°* denote a one-dimensional linear eigenspace of
A corresponding to all eigenvalues other than A. Note that the matrix (A — \I,,)
has common invariant spaces with the matrix A, so we conclude that y € T*" if and
only if (p,y) = 0.

Any vector z € R" can be decomposed as

rT=uq+y
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where ug € T¢, y € T*" and
u=(p,x).

In the coordinates (u,y), the map (3.11.1) can be written as
= Xu+ (p,G(ug +y)),
§=Ay+Gug+y) — P Gug+y)q

Using Taylor expansions, the last two equations can be written as

1 1
i = \u+ —0u? +ulb,y) + —ou® + ...

. 6 (3.11.4)
0 :Ay+§au2+...

where u =R, y € R", §, 0 € R, a, b € R” and (b,y) = >, bjy; is the standard
scalar product, and can be expressed as

(b,y) = (b, B(¢,))-

The center manifold of (3.11.4) has the representation

1
y=V(u)= §w2u2 + O(ug),

where wy € T C R™, so that (p,ws) = 0. The vector wy satisfies
(A — ]n)’LUQ +a=0.

We have A = 1 is not an eigenvalue of A, so the matrix (A — I,,) is invertible in R™.

Thus, we have
wy = —(A—1,)""a

and the restriction of (3.11.4) to the center manifold takes the form

i =—u+ %M + é(a —3(q, (A — L) ra))u® + O(u*)

where 6 = (p, B(¢.q)), o = (p,C(q, 4, q)) and a = B(¢, ¢) — (p, B(¢, 4))q.
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Using the identity
.1
(A= 1L)d= 54,

the restricted map can br written as

i = —u+ a(0)u® + b(0)u® + O(u') (3.11.5)
where .
(I(O) = §<ﬁa B(qu Cj)>>
and
H0) = <06, C(a..0)) ~ 3((5 B@ D)) ~ 3. B, (A~ 1) B(d.d)).

The map (3.11.5) can be transformed to the normal form

§=—6+c0)8+0(¢

where

c(0) = a*(0) — b(0).

Thus,the critical normal form coefficient ¢(0), allows us to predict the direction of

bifurcation of the period-two cycle. ¢(0) is given by the following invariant formula:

(0) = 56 Cl6,0,0)) — 55, B, (A~ 1) B(@. )

If ¢(0) > 0, then a unique and stable period-two cycle bifurcates from the fixed point
at the bifurcation point ¢ = 2ry — % + 1.

o 0
B(¢,q) = (2r(qry)4y(2ryq)+8y32(p+qy)) :
(1452 +rg)?

o 0
C4.4.9) = ( 6r2(g=rg) _ 12rj(24=3rp) | 52q(rg+35°—1)+4r(p=65°) 20y(p+qy)—48y4> :

(+724r5)3 (1452 +ry)3 (1+72+rg)3 (1+724rg)3
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i 1+ +ry 672(q — rYy) 12ry(2q — 3ry)
<p7C(Q7q’q)> = - 1 —5 5 N3 —5 —\3
+924+q ) [A+72+ry)? (1+7*>+71Y)
2q(ry +3y° — 1) +4r(p — 69°)  20y(p + qy) — 48y4}
(1+92+7ry)3 (I+g2+ry)3 |

+3

1 - - o
(A—I)_lz —1_ 1 . :1+y2+ry —1+Wﬂr€/ -1 '
9—ry ] 4 207 212 _ 4=y 1

T+5%+rj T+g%+rg T+5%+r5

(1+524rg)?
2r(q—rg)+45(2rg—q)—85°+2(p+q7)
(1+524ry)?

1+ § 4y

A—D"'B(G,q
( )" B(4,4q) 2

< 2r(q—ry)+4y(2rj—q) —85>+2(p+q¥) )

. e 1+72+ry (0
B(q, (A~ I, 1B(q,q))=2—g2 .

where

. <2r<q —ry) +45(2ry — q) — 8 + 2(p + qy)) (—2r<q —ry) — 85" +2(p + qy)>
(1+ 5%+ 1y)? (1+ 5% +1y)? '

(.80 (A 1) B - (| ) =S )

{—27‘(q —(qﬂJ)r ;ffi—g;)f(p + q@)] ) '
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3.12 Matlab Codes and numerical discussion 2

In this section we introduce Matlab code that uses our results, and then we insert

an example.

Matlab code for period-doubling bifurcation:

r= ; %r wvalue
p= ; %p value
a=—1xr;
u=0;
t=1[2a0-p];
1= roots(t)
for k=1:3
if 1(k)>0
y=1(k);
if (2%rxy—y 241)>0
u=u+1;

"The positive fixed point is’

y=1(k)

"The bifurcation valu of the parameter q is ’

q=(2xr*xy—y "2+1)

A=—1x( (I4y 2+r=(y))/(1+y"2+q) ) ;

B=06x(1"2) % (q—r*y) —12%rxy*((2xq—3%r*y) ) +3%(2xqx*(r*xy+3*(y " 2)
—1)+4xr*(p—6%(y " 3))) —(20%y* (ptqxy) —48xy "4) ;

U=(1+y 2+1*y) "3 ;

D=Ax(B/U) ;
F=(2xr s (qrxy) +dey (25 rxy—q) =8y 3+2x(ptaxy) ) /((2xy 2 )=(1+y
24q ) )

L=(—2«r*(q—rxy)—8xy " 3+2x(ptaxy)) /((1+y 24r*y) 2 );
J=FxL;

c=(1/6)*D—(0.5 )=*J

if ¢>0
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" A unique and stable

the fixed point at

end

amin=0;
amax=10;
x0=.2;x1=.3;
n=1000;
jmax=200;

t=zeros (jmax+1,1);
z=zeros (jmax+1,250) ;
del=(amax—amin) /jmax ;
for j=1:jmax+1
x=zeros (n+1,1);
x(1)=x0;x(2)=x1;
t(j)=(j —1)xdel4+amin;
a=t(]);

for i=2:n

period—two cycle bifurcates from

the bifurcation point.’

x(i4+1)=(pta.xx(i—=1))/(1+(x(i)) 24rxx(i—1));

if (i>750)
z(j,1—=750)=x(i+1);
end

end

end

plot (t,z, blue’, MarkerSize’ ,5) ,title (’Period—doubling

bifurcation ”)
end
end

end

if u==
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"The system does not undergo period—doubling (flip )

bifurcation.

end

Example 3.3. Consider the difference equation (3.2.1). Fix p, r, and consider q
as bifurcation parameter. Take p =1, r = 0.9, and 0 < ¢ < 10. Equation (3.2.1)
becomes

1 =+ qYn—1

S n=0,1,2 . 3.12.1
I L (3.12.1)

( e ) ' (3.12.2)
Ya(n 14ya(n)?,, +0.9y1 (n)

The positive equilibrium point y of (3.12.1) satisfies

Which s equivalent to

7P +097°+(1—¢q)j—1=0. (3.12.3)

Theorem 3.6 shows that the fixed point undergoes a period-doubling bifurcation at
* = 1.8y — 4% + 1. So Equation (3.12.3) at ¢* becomes

2% —0.95* — 1 =0.
Thus the theoretical fized point of (3.12.1) is
y = 0.97546665.

Note that r = 0.9 > % = —0.0236, so the condition of Theorem 3.6 holds. Sub-
stituting the value of y in ¢* we get

¢* = 1.8043047.

Now to determine the direction of period-doubling bifurcation we find c(0).

) 1 R —0.2466518
qg= and p = (—0.7533482) ) :
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So
c(0) = 0.1857633587 > 0

So this shows that a unique and stable period-two cycle bifurcates from the fized
point at the bifurcation point ¢* = 1.8043047. Figure (3.3) shows the stable period-

two cycle.

Period-doubling bifurcation

12

S S
1+92+0.9yn—1"

Fig. 3.3: Period-doubling bifurcation of y,+1 =

And using the Matlab code we get the following output
| =
0.9755 + 0.00001
-0.2627 + 0.66601
-0.2627 - 0.6660i
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ans = "The positive fixed point is’

y = 0.9755
ans = "The bifurcation valu of the parameter q is ’
q = 1.8043
c = 0.1858

ans = ~ A unique and stable period-two cycle bifurcates from the fized point at the

bifurcation point.’

Period-doubling bifurcation




1. DYNAMICS OF Xy 1 = qrpist—

In this chapter we consider the second order, quadratic rational difference equation

o+ fry
Ty - )
T A+ Br, + Ca2_,

n=0,1, 2, .. (4.0.1)

with positive parameters «, 3, A, B, C, and non-negative initial conditions.

We will focus on the dynamic behavior of the positive fixed point and the type
of bifurcation exist where the change of stability occurs. And then we introduce

some Matlab codes that use our results.

4.1 Change of variables

Consider Equation (4.0.1), let

Then
Tpy1 = Eyn—l—ly
and
A
Tp—1 = Eyn—y
So Equation (4.0.1) becomes
Ay B a + ﬁg_zyi—l
HIn+l —
B T A4 Bdy, + C&y2




83

. at+pBz?_;
4.  Dynamics of Tp41 = A+an+"cx2 -
2_

Yos = B Oé+5g_zy?z—1
n+1 — ~ 4
T AAL +y + O )

y B a% + %yi—l
n+l — .
1+ yn + S92

Let p = a%, q %, and r = CB—Q‘. We get
+ qyp_
yn+1 = p qyn 12 , n:O’ 1’ 2’
L4 yn +1Yy5_4

4.2 Equilibrium points

In this section we prove the existence of a unique positive equilibrium point of the

rational difference equation
+ 2
P 0 1,92, .. (4.2.1)

Yn+1 = 1+yn+ryg_17

with positive parameters p, ¢, r, and non-negative initial conditions. And we give a

Matlab code to find it. To find the equilibrium point, we solve the following equation

5 — p+ay
L+g+ry’

hence

rg° +(1—q)y° +y—p=0. (4.2.2)

can be considered as two curves with behavior

_ _ p
ry’ + (1 —-q)j = i
S~——_— —
a parabola S——
a hyperbola

Equation (4.2.1) has a unique positive equilibrium point g, which can be obtained

as an intersection point of these two curves. From figures 4.1 and 4.2 we obtain the

required conclusion.

To find the roots of Equation (4.2.2) we use the following code.
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Fig. 4.1: The equilibrium of (4.2.1), ¢ > 1.

syms X q r p
t=[r (I-q) 1 -pJ;
lI= roots(t)

And then we choose the positive root to be g.

4.3 Linearized equation

To find the linearized equation of (4.2.1) about the equilibrium point g, let

 ptay?
f(x7y)_1+x+7,y2
of —(p+qy®
O (4, = 0+ )
Ox (1+ x4+ ry?)
of . —(p+ay’)

5, 0 0) = T



a+5mi_1

. mics of x = A ph. 1.2
4 Dyna ntl A+Bxn+Cz2_

Fig. 4.2: The equilibrium of (4.2.1), 0 < ¢ < 1.

Since 72
g Pty
1+ 9 +ry?
we get B
|
0y =—.
ox 1+y+ry
Similarly,
OF (= 2y +o+ ry?) — 2ry(p + qy°)
oy’ (14 z +ry?)?
OF (5.q) = 2080+ 7+ ry?) — 2ry(p + qy)
dy (1+g+ry?)?
of _ . _ 2ylq—ry
= (4,9) = (_—_)2
dy 1+y+ry
The linearized equation is
—y 29(q — ry)

Yn+1 = — Yn—1-

11+ 1rg+ry

And the characteristic equation is

y ) 25(q —ry)

A+ - =
149 +ry? 149 +ry?
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4.4  Local stability

To check when the unique positive equilibrium point g of Equation (4.2.1) is locally

asymptotically stable, let

W Y _ 2ylg—ry)
L+y+ry?’ 1+ y+ry?

A sufficient condition for asymptotic stability of ¢ is |a| < 1 —b < 2. Which is

equivalent to

—-b<1,

and |a| <1—0.

(4.4.1) holds when

_ 2y(g —ry)

<1
L+ g+ ry?

SO
2ry” — 24qg < 1+ 4§+ ry’
and hence,
-1 72— 7
g> -ty
2y
Equation (4.4.2) is equivalent to
_ ol — 1
B I ()
L+g+ry L+g+ry?
SO

U< —20q+3rgP+1+7
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and hence,

1+ 3ri?

<
q 2

So (4.4.2) holds when ¢ < % Hence a sufficient condition for asymptotic

1 —9 — 1 3 —92

2y 2y
4.5 Invariant intervals

Theorem 4.1. Consider the difference equation (4.2.1), and let {y,}

lution. Then [0, 1] when pr < q is an invariant interval.

Proof. Assume that pr < ¢, and yn_1, yn € [0, Z] for some integer N.

P+ aui_y
L+ yn +1y3
B Q(§ +yX-1)

7’(% + %?JN + yx_1)

Q(% +y12\/—1)

N T(% +y12v—1)
q
r

YN+1 =

And working inductively we complete the proof.

)
n=-—1

be a so-
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4.6 Boundedness
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We will show that every solution of the difference equation (4.2.1) is bounded. Let
{yn}>2 _; be a solution of (4.2.1), then we have for n =0, 1, 2, ...

p+aqyr_,
L4y, +71y2

_ p W1
Ltyn+ryiy  1+uyn+rys

2
< p + qynfl

0< Yn+1 =

— 1 7"%2%1

r

Hence the solution is bounded, since it is bounded from below and from above.

4.7 Period two cycles

In general, we say that the the difference equation has a prime period two solution

if the solution eventually takes the form:

A QS’ ¢7 ¢7 /l/]’ A
where ¢ and v are positive, and ¢ # 1.

Theorem 4.2. Assume that Equation (4.2.1) has a two periodic cycle {¢p, 1}, where
¢ and 1 are positive, and ¢ # . Then q must satisfy the following condition:

1+ 7(¢” +4?)
o+¢

(4.7.1)

Proof. Assume {¢, v} is prime period two solution of Equation (4.2.1), then ¢, v
satisfy :
p +q¢?
¢ —

—_— m (4.7.2)
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and e
Ptq
= 4.7.3
v 14 ¢+ ry? ( )
From Equation (4.7.2) we have
¢+ ¢ +1d° = p+q¢?, (4.7.4)
and from Equation (4.7.3) we have
Y+ Yo+ = p+ g’ (4.7.5)
Subtracting Equation (4.7.5) from (4.7.4), we get:
(¢ =) +7(0° = ¥%) = q(¢* — ¥?).
Since ¢ # 1, the last equation can be divided by (¢ — 1), and we get
L+ 7(¢* + ¢¢ +¢°) = q(p + ). (4.7.6)
” L= r(¢? 4 4%) + 4(0 +0)
~1—r(? + %) +q(p +
b = E—
But ¥¢ > 0, so
—1=r(@* +4%) +q(é +¢) >0,
hence
L+ (0" +47%)
oty
Which completes the proof. Note that from (4.7.6) we get also:
r(¢® + oY +9%) + 1
gy TGV 1
q
Which is always positive. [ |

To study the stability of the two cycle {¢, 1} (if it exists), let

Zn = Yn—-1,
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and
Un = Yn-
We get the following system
Zn4+1 = Up
2
P+ qzy
v =— n=0,1, 2, ...
n+1 1 I v, I 7’22”7 ) ) )

Let F' be a function on (0,00) x (0, 00) defined by

F z v
o]\ pte |7
14v+rz?

( >
’17/)
is a fixed pOth of F2(Z, ’U), where

+q2*
7 (Z) _ (Fl(va'z)) _ ( 1—Ii)-v-(i]-r2zQ ) ) (4.7.7)
v Fy(v, z) Hf{?;%

Now we find the Jacobian matrix of F?(z,v), we have

Then

OF,  (1+v+7r2%)2qz — (p+ ¢2%)(2rz)

0z (1+v+rz?)? ’
o —(p+¢?®)
v (L+v+r2)?
OF, _ —(p+qv*) 752

0z (1+ (Fi(v,2)) + rv?)?’

and
0F, (14 (Fi(v,2)) +rv?)(2qv) — (p + qv?) (222D 4 o)

o (14 (Fi(v,2)) + rv?)?

The Jacobian matrix is

(1+v+r22)2gz—(p+q22) (2r2) —(p+g2?)
2 . (14+v+r2z2)2 (14+v+r2z2)2
JE (2, 0) = —(p+qu?) 2= (14+(Fy (v,2)) +702) (2qv) — (p+qv2) (ZLE) o)

(14 (F1 (v,2))+rv?)? (14 (F1 (v,2))+rv?)2
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2¢(q—r¢g —¢ 5
2 _ 1+y+re 1++ro
TE (2 0)l60) = Srovord) R YL
(1+y+ré?)(1+o+ry?) (1+y+re?)(1+o+ry?)
> o — 2rd)(q — 2r¢)
200 (q — 2r¢)(q — 2r
det(JF?(¢,¢)) = 5 50
1+ +7rd2)(1+ ¢+ ry?)
and

_ 20(g = 2r¢)(L+ & +1¢°) + (2q9 — 20" ) (L + ¢ +7¢°) + ¢

tr(JE2(¢, 1)) (14 ¢ +rd?)(1+ ¢ + r?)

A sufficient condition for locally asymptotic stability of {¢, 1} is
tr(JF?)| < 14 det(JF?) < 2.

Which is equivalent to

det(JF?) < 1, (4.7.8)
tr(JF?) < 1+ det(JF?), (4.7.9)
—1 —det(JF?) < tr(JF?). (4.7.10)

(4.7.8) holds when

201p(q — 2r¢)(q — 2r¢p) < (L+ ¢ +7r¢*) (1 + ¢ + rp?),

So
200(q = 2r¢)(q — 2r¢) — (1 + ¢ +r¢”) (1 + ¢ + %) < 0.

And (4.7.9) holds when

20(q — 2rd)(1 + ¢+ r®) + (2q¢ — 2r®) (L 4+ 4+ 1¢?) + ¢
(1 + 9+ 7"¢2)(1 + ¢+ mZJQ)
200 (q — 2r¢)(q — 2r1))
(T4++r¢?)(1+ ¢ +1¢?)’

<14

SO

20(q — 2r¢) (1 + ¢ + 1¢%) + (2q¢ — 2rp*) (1 + ¢ + 1¢%) + ¢
< (L4 +71¢*) (14 ¢ +rp?) 4 2¢09(q — 2rd) (g — 2r¢),
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and hence

20(q — 2r¢)(1 + ¢ +1¢%) + (200 — 2ry°) (1 + ¢ + 1¢%) + )
—(L+ ¢+ ") (1 + ¢+ 19?) = 200(q — 2r¢)(q — 2r)) < 0.

(4.7.10) holds when

20(q — 2r¢)(1 + ¢ + 1rp?) + (2q0 — 2rp*) (1 + Y +1d%) + Py

1+ +7rd2)(1+ ¢+ ry?)
-1 200(q — 2r¢)(q — 2r))
(1 +¢+T¢2)(1 —|—¢—|—7"1/)2)7

SO

20(q = 2r¢)(1+ & +1¢%) + (2q¢ — 2rd*) (1 + ¢ + 1¢?) + ¥
> —(L+ 4 +7¢")(1+ ¢+ %) = 200(q — 2r¢)(q — 2r),

and hence

20(q — 2r¢)(1+ ¢ + %) + (2q¢ — 2r*) (1 + ¢ + 1¢%) + @0
(1 + 9 +7re*) (1 + ¢+ rY?) 4+ 200(q — 2r¢)(q — 2rp) > 0.

4.8 Global stability

In this section we investigate a result about the global stability of the positive

equilibrium point of (4.2.1) .
Theorem 4.3. Assume pr < q < \% Then the positive equilibrium point y on the

interval S = [0, 2] is globally asymptotically stable.

Proof: this proof can easily done depending on Theorem (1.7). Assume pr < ¢, and
consider the function )
. ptaqy
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Note that S is an invariant interval and all non-negative solutions of Equation
(4.2.1) lie in this interval, and f(z,y) on S is non-increasing function in z, and

non-decreasing in y.

Now we need to show that the difference equation (4.2.1) has no solution of

prime period two in S.

For seek of contradiction assume that the difference equation (4.2.1) has a
solution of prime period two {¢,1} € S. Then ¢ must satisfy
L+7(¢" +97)
> ;
¢+

but since {¢, ¥} € S
L+r(¢*+¢7%) _ 140

R R
hence
r
Q>2—q7
SO
9o T
Q>§7

which is a contradiction, since ¢ < \/ﬁzﬁ

So Equation (4.2.1) has no solution of prime period two in S. Then both
conditions of Theorem (1.7) hold, then (4.2.1) has a unique positive equilibrium

point y € S, and it is globally asymptotically stable. [

4.9 Matlab codes and numerical discussion 1

In this section we introduce Matlab codes that use our results, and then we insert

some examples.

Matlab code for finding the fixed point and its stability and solution

behavior:
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syms X;
r= ; % r value

p= ; % p value

= ; % q value

t=[r (I-q) 1 -pl;

1= roots(t)

if 1(1)>0

"The positive fixed point is’
y=1(1)

else if 1(2)>0

"The positive fixed point is
y=1(2)

else if 1(3)>0

"The positive fixed point is
y=1(3)

end

end

end

a=(y)/(1+y+r*y"2)

b= (2xy*(q—r*y))/(1+y+r*y"2)

if q<((143xrxy”"2) /(2xy)) && q>((—1+r*y 2—y)/(2xy)) && q

<((14+3xrxy 2 +2xy) /(2xy))
"The positive fixed point
else
"The positive fixed point
end
C=p*T
m=(((r) " (0.5))/(2) " (0.5))
if q¢>=c && q<=m
"The positive fixed point
stable’

asymptoticlly stable’

is not asymptoticlly stable

globally asymptoticlly

Y
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n="70;
x=zeros (n+1,1);
t=zeros(n+1,1);
x(1)=0.1;x(2)=1.1;
tt (1)=0;
for i=2:n
t(i)=i—1;
x (14 1) =(prae(x(i 1)) "2) /(14 (x (i) )+rx(x(i-1)) "2)
end
t (n+1)=n;
plot(t,x,t,x,’. ") xlabel( 'n—iteration’) ,ylabel(’'x(n)’)
axis ([0 70 0 10]), title (’The behavior of the solutions’)
else

"The positive fixed point is not globally

asymptoticlly stable’

n="70;
x=zeros (n+1,1);
t=zeros(n+1,1);
x(1)=0.1;x(2)=1.1;
tt(1)=0;
for i=2:n
t(i)=i—1;
x(1+1)=(pra(x (i 1)) "2) /(14 (x(i)) 2415 (x(i-1)) "2)
end
t (n+1)=n;
plot(t,x,t,x,’. ") xlabel( 'n—iteration’) ,ylabel( ’x(n)’)
axis ([0 70 0 10]), title (’The behavior of the solutions’)

end

Example 4.1. Consider the difference equation (4.2.1), take p = 0.4, ¢ =5, r =
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0.5. Equation (4.2.1) becomes

0.4+ 5y2_
7 N
1 + Yn + 0'5yn—1

Yn+1 = = 0, ]_, 2,
With initial conditions yo = 0.1, y; = 1.1.
The theoretical positive equilibrium point will be y = 7.7554165829.

Theoretically the positive equilibrium point § is unstable since pr = 0.12 < q
but ¢ > Y2 = 0.5,

Figure (4.3) shows that the positive equilibrium point is unstable.

unstabile fixed point

10 T T

Fig. 4.3: The positive equilibrium point is unstable.

And using the Matlab code we get the following output
| =
7.8750 + 0.0000:
0.0625 + 1.00601
0.0625 - 1.0060i

ans = "The positive fixed point is’
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n n—

y = 7.8750

a=0.1975

b=0.4196

ans = "The positive fixed point is asymptoticly stable’
c=2

m = 0.5000

ans = "The positive fixed point is not globally asymptoticly stable’

The behavior of the solutions

10

x(n})
w

0 10 20 30 40 50 60 70
n-iteration

Example 4.2. Consider the difference equation (4.2.1), take p=0.5, ¢ =0.5, r =
0.5. Equation (4.2.1) becomes

0.5+ 0.5y2_,

L n=0,1,2, ..
14y, +05y2_,

Yn+1 =

With initial conditions yo = 0.1, y; = 1.1.
The theoretical positive equilibrium point will be y = 0.3926467817.

Theoretically the positive equilibrium point y is stable since pr = 0.25 < q and

qg%zo.&
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Figure (4.4) shows that the positive equilibrium point is stable.

stabile fixed point
10 T T T T T T

D i i i i i i
0 10 20 30 40 50 60 70

n-itaratinn

Fig. 4.4: The positive equilibrium point is stable.

And using the Matlab code we get the following output
| =
-0.6963 + 1.4359%
-0.6963 - 1.4359i
0.3926 + 0.0000¢

ans = "The positive fixed point is’

y = 0.3926
a = 0.2672
b=0.1623
ans = "The positive fixed point is asymptoticly stable’
c = 0.2500
m = 0.5000

ans = "The positive fixed point is globally asymptoticly stable’
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x(n}

10

The behavior of the solutions

L L i L L

10 20 30 40 50
n-iteration

mn
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Py,

4.10 Bifurcation of y,.1 = Tyt

In this section we study the types of bifurcation that occur at ¢ = ¢* as ¢ is the

bifurcation parameter.

In order to convert Equation (4.2.1) to a second dimensional system with three

parameters p, ¢, and r, let

Zn = Yn-1,
and

Up = Yn.
We get the following system

Zn+1 = Up

p+qz%
U = —— 22" =0, 1, 2, ...
Ty Up + 122,

This system has the unique fixed point (z,7)T = (,7)”. Convert this system in to

second dimensional map

z fi(z,v) v
F _ _ e 410.1
() (MZ,U)) (—) D

Now we find the Jacobian matrix of F(z,v), we have

df

Bz O

dfi

Eri
Ofs  2qz(14v+r2%) —2rz(p+ q2°)
FER (1+v+rz2)? ’

and
0fs _ _—p+a")

v (I4+v+rz?)?

The Jacobilan matrix is

0 1
JF(z,v) = 2qz(14v4r2®)—2rz(ptqz?)  —(p+gz?)

(1+v+rz2)2 (1+v+rz2)2




a+,83:%_1

4. Dynamics of T+l = At Bz, +Cz2 . 101
n Tn—1
0 1
JF(Z7 U)’(g’g) = 217((]77'@) —y
1+g+ry?  1+y+ry?
So ( )
_ 2ylg —ry
det(JF(y,9)) = ———,
(JF(y,7)) Tt 117
and -
_ —Y
tr(JFE(y,y)) = ————.
Theorem 4.4. The fized point (y,y) of the system (4.10.1) undergoes a saddle-node
bifurcation when q = 37“792;&
y

Proof: Saddle-node bifurcation happens when
det(J) =tr(J) — 1.

So the fixed point (y,y) of the system (4.10.1) undergoes a saddle-node bifurcation
if
det(JF(,9)) = tr(JF(g,9)) — 1

or

2lq—ry) -y
l+y+ry? 1+y+ry?
SO
—2§(q—rg=-§-1-g—ry’
thus
P2+ 1
2y '
So saddle-node bifurcation happens if ¢ = g 241 [ |

2y
Theorem 4.5. The fized point (y,y) of the system (4.10.1) undergoes a period-

3ry2+1

doubling bifurcation when q = 5

Proof: Period-doubling bifurcation happens when

det(J) = —tr(J) — 1.
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So the fixed point (y,y) of the system (4.10.1) undergoes a period-doubling bifurca-

tion if
det(JF(7,9)) = —tr(JF(g, 7)) — 1
or B B B
_29(g—ry) y B
l+y+ry? 1+y+ry?
SO
—2§(q—ry) =g 1-g—ry’
thus
3P+l
==
So period-doubling bifurcation happens if ¢ = Il [ |

2y
Theorem 4.6. The fized point (y,y) of the system (4.10.1) undergoes Neimark-

. . 72 —g— . 7
Sacker bifurcation when q = %, if r > %

Proof: Assume r > % Neimark-Sacker bifurcation which happens when
det(J) =1
and
-2 <tr(J) < 2.

So the system (4.10.1) undergoes Neimark-Sacker bifurcation when
det(JF(y,79)) =1 (4.10.2)

and
-2 <tr(JF(y,y)) < 2.

The last inequality always holds, since it is equivalent to

—y

_2<—
14+9y+ry?

< 2,

which can be split to -
Y
L+ g+ry?’
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and _
% <2,
1+7g+ry?
SO

—2 -2y — 2ry® < —7,

which implies

—2— 75— 2ry* <0,

Which always holds. And ﬁ < 2 implies
24 3y + 2ry° > 0.
Which also always holds.

Now Equation (4.10.2) holds if

C2(g—ry) _

1 +y+ry?

SO
—29(q—ry) =1+g+ry

thus

_ -y -1

= % .
Which is positive since r > % So the system (4.10.1) undergoes Neimark-Sacker
bifurcation at (7, ) when ¢ = gl |

2y

4.11  Direction of The Period-Doubling (Flip) bifurcation

In this section we will find the direction of Flip bifurcation of system (4.10.1) at

3rg2+1

4= "9

We need at first to shift the fixed point (7, y) to the origin. Let

Wy = Zn — Y, Up = Uy — Y.
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System (4.10.1) will be
Wn4+1 = Un
—\2
Unp+1 = p_‘_q,(wn—i_y) N9 TLZO, ]-a 27
L+ (up +y) + r(w, +4)?
Or
Yo =AY, + G(Y,), (4.11.1)
where
0 1 Wh,
A= <2y(q—ry) - ) ) I T (u ) )
1+g+rg?  1+g+ry? "
and
1
G(YY) = §B(Y Y)+ C’(Y YY)+ O(||Y|| )
Bi(Y,Y Gy, Y, Y
B(Y,Y) = YN C(Y,Y,Y) = 1( )
By (YY) Cy (Y, YY)
where
Z anka |77 0 ky])
and
" 9%Y(n
(x,y, TIYLZi).
A lk;z am@nﬁ%'” oliyz)

So Bl(¢7¢) =0 and Cl(wv(b? 5) = 07

29(1 4+ y) — 2r(p + 2y(2qy — 2ry?))

By (v, ¢) = A+ 5+ (Y11)—
2y(2ry +q) 2y
—(1+y—|— 7) (¢1¢2+¢2¢1) —( 1+7+ 752 (¢2¢2)
and
Colr i, 6) = 2931+ D) = o) + 457 = 19) (e

(1+7+7r5?)3
B _ o) —2
e 12)1124537“3;27;1;) oray (010182 + 10281 + a1 &1)+

4y(q — 3ry) —6y
m(%(ﬁzfl + P21 &a + P19a&a) + W

5 (V20282).
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Now we find the eigenvectors of A and AT corresponding to the eigenvalue

3ry2+1

A = —1 at the bifurcation point ¢ = 5

Let ¢ and p* be the eigenvectors of A and AT corresponding to the eigenvalue

A = —1 respectively. So we have

Aj = —g, and ATp* = —p*.

(A+1)j=0 (4.11.2)
(AT 4+ Dp* = 0. (4.11.3)

Equation (4.11.2) is equivalent to

25(q—17) u - ’
T 1 Trpe/ \@2 0

Let ¢, = 1, from the first equation we get

G1+¢=0
. . 1
S0 o = —1. Thus take ¢ ~ ( 1).

Note that in order to have a nonzero solution for (A + I)§ = 0, the matrix

(A + I) must be singular. Which means that |A + | must equal zero, so

—y L 2a—ry)
1+7+ri? 1+3 +ri?
Thus, ¢ satisfies the second equation fi‘g;:gg + 3 +gZTg2 —1=0.

Now, consider Equation (4.11.3) which is equivalent to

AT
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Take p*, = 1, from the first equation we get

2y(q — ry)
T =0
! 1+§+Tg2p2

o —2y(4—ry)
so p* = —fi(;;:gg Thus take p* ~ 1+y;’”y2 .

Note that in order to have a nonzero solution for (AT + I)p* = 0, the matrix

(AT 4 I) must be singular. Which means that |A” + I| must equal to zero, so

L ] _2la—ry) _
L+g+ry® 1+y+r?
Thus, p* satisfies the second equation p*; + (1 + (1 — m)p*2 =0.
Now, we normalize p* and ¢,
o o —25(g —ry)
0,4 = ———75 -1
I+y+ry
—2z7(q—7'g) . )
A 1+g+ry _ +g+ry
Take p =1 yl o= T+ (2q+ )12
The critical eigenspace T corresponding to A = —1 is one-dimensional and

spanned by an eigenvector ¢. Let T°" denote a one-dimensional linear eigenspace of
A corresponding to all eigenvalues other than A. Note that the matrix (A — AI,,)
has common invariant spaces with the matrix A, so we conclude that y € T*" if and
only if (p,y) = 0.

Any vector z € R" can be decomposed as

T=uq+y
where ug € T¢, y € T*" and
u = (p, ).

In the coordinates (u,y), the map (4.11.1) can be written as

U= Au+ (p,G(ug +v)),
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§=Ay+Gug+y) —(p,Gug+y)q
Using Taylor expansions, the last two equations can be written as
- Loy L4
U= Au—+ §5u +ulb,y) + —ou’ + ...
6 (4.11.4)

1
J= Ay+§au2—|—...

where u =R, y e R", 6, 0 € R, a, b € R™ and (b,y) = >, byy; is the standard

=1

scalar product, and can be expressed as

(b,y) = (b, B(¢,))-

The center manifold of (4.11.4) has the representation

1
y="V(u) = §w2u2 + O(u3),

where wy € T C R™, so that (p,ws) = 0. The vector wy satisfies
(A—I)wy+a=0.

We have A =1 is not an eigenvalue of A, so the matrix (A — I,,) is invertible in R™.
Thus, we have
wy = —(A—1,)""a

and the restriction of (4.11.4) to the center manifold takes the form

R %M + é(a 304, (A — L) a))u® + O(u?)

where 6 = (p, B(¢,q)), o = (p,C(q,q,q)) and a = B(q, ¢) — (p, B(¢, 4))q.

Using the identity
.1
(A= 1I)d= 54,

the restricted map can be written as
@ = —u+ a(0)u® + b(0)u® + O(u?) (4.11.5)

where
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and
R T 1 o
b(0) = =5, C(4,4,9)) - Z(<p,B(q,Q)>)2 — 5 B, (A= 1) 'B(4,4)))-

The map (4.11.5) can be transformed to the normal form

§=—E+c(0)€ +0(¢h
where
c(0) = a*(0) — b(0).

Thus,the critical normal form coefficient ¢(0), allows us to predict the direction of

bifurcation of the period-two cycle. ¢(0) is given by the following invariant formula:

(0) = 56 Cl6,0,0)) — 55, B, (A~ 1) B, )

If ¢(0) > 0, then a unique and stable period-two cycle bifurcates from the fixed point

3rg2+1

at the bifurcation point ¢ = 5

L 0
B(q,q) = <2y(3q+1+4ry)+2q2T(P+2y(2qy2ry2))> :
(I+y+ry?)?

R 0
C(4,4,9) = (127’27(—3(<J(1+ﬂ)—7“p)+4z72(q—m?)) _ 3=20(149)+24(g—rD) ~6rg® | 125(a=3r7) | __6f ) :
(14+g+ry?)3 (14+g+ry?)3 (4+g+rg?)® * (145+ry?)3

(5, (6,4, 3)) = — ( L+g+ry° > {12ry(—3(q(1 +7) —rp) +45%(q — 7))
7 o 1+ (2¢g+ )y —ry? (147 + r72)3
—2q(1 +¥) + 24(q — rij) — 6rqy? 12y(q — 3ry) 67 ]
(14§ +r5)? Ity A+g+rP]

3

-1 _
(A-1)"t= -1 L = sz—+r172 1t e 1
2y(g=ry) 1 4+ U 2y + rij? _ 2y(g—ry) 1)

Ly Ly +rg? L1y
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2y(3q+1+4ry) 2q+2’r‘(p+2y(2qy 27,y2))

(A—D*B@gyzliiiﬂL Tro+ri?)?
’ 2y + ry —27(3q+14+47r7) —2q+2r (p+25(2q5+2r52))

(14+g+ry?)?

B4, (A1, B(q,)) = 24+ <0> ,

2y +ry®2 \m

where

7n:(—%Bq+1+yw—2q+m@+2mwg+%f»)X
(1+7+ry?)?

2q(1+179) — 2r(p + 2y(2qy — 2ry?)) — 23

( (147 + ry?)? >'

o mra o ([20Bq +1+4r7) +2q — 2r(p + 25(2q7 + 2ry?))
(.50 (4~ 1) Bl ) = (| G 2= A e 2 2]
{2q<1 +7) — 2r(p + 25(2qy — 2ry?)) — Zy_D

(147 +rg?)? ‘
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4.12 Direction and stability of Neimark-Sacker bifurcation

To determine the direction of the invariant closed curve that bifurcates from the
positive fixed point we will follow the normal form theory of Neimark- Sacker bifur-
cation given in [5].

Theorem 4.7. If ¢ = ¢* = Tgt;_g, and r > %, then the characteristic equation

of (4.2.1) has two complex conjugate roots that lie on the unit circle. Moreover the

Neimark-Sacker bifurcation conditions are satisfied if

. \/30@(1 +9)3 4+ 265(1 + )% + 1852(1 + §)? + 443 + 2y* + 2y2
248 )

Proof: At the beginning we will show that the characteristic equation of (4.2.1)

Y \ 29(q —ry)

A+ - =
L+g+r2"  1+7+ri?

(4.12.1)

has two complex roots. The roots of (4.12.1) are

;,Qj:\/z

where )
_ 20 — 1
y Ly y(q—ry)

I+y+ry?)?  1+y+ry>

Substituting ¢ = ¢* we get

So

Thus, (4.12.1) has two complex roots if A < 0, which is equvilent to
7

— 2 4<0
(1474 ry?)? ’
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which implies

7 <41 +7g+ry?)?,

SO

41420+ 72+ 2L +9)rg? +r*y*) — 5% > 0,

thus, A(¢*) < 0 if
44 87 + 352 + 8(1 + 7)ry* + 4r’*y* > 0,
which always holds.

Next we show that (4.12.1) has two conjugate complex roots on the unit circle

when g = ¢*.

Since A; o are the roots of (4.12.1) we have

%i(a — 1
My = 22419
1+y+ry
Substituting ¢ = ¢* we get
Ay = 1.

But A\ Ay = |\ 2|> = 1. Thus, the two complex roots are on the unit circle.

Assume the roots of (4.12.1) at ¢ = ¢* are e, so we have
e 410 — _ 7y _
L+ g+ ry?
but € + =% = 2 cos(f). Thus,
y

6) = — .
) = vy

Note that 5t < cos(d) < 0, so there exists 6y € (3, 7) such that

0y = cos™! | — 3/ — .
21+ g+ ry?)

And e*% £ 1 for k=1, 2, 3, 4.
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Next we will show that %L}:q* # 0.
|/\|2 — 23]((] — Tﬂ)
L+g+ry?
differentiate with respect to ¢ we get
dAP? O+ g+rg?) 290 —rgh + (0 — r9)25) — (25(a —r9)) (G +2r55)
dq (1+y+ry?)?

To find Z—z we differentiate equation (4.2.2) with respect to ¢

d
— (P’ + (1 =@y +5—p) =0,

dq
> dy dy dy
Y _ay 9 Y
3ry =2 + (1 — q)25—= 1)+ ->=0
thus,
dy 7

dg  3ry2+ (1 —q)2y+ 1
Substituting ¢ = ¢* we get

dy y
dg  2riP+25+2
So
A _ A(r)
“dg TS T AT g
where

A(r) = —1077r® + (—185°(1 + §) — 45° + 2¢°)r* + (—14g3(1 + 9)° — 45° (L + §) — §° — 2¢*)r
—65(1+9)° -7 =9’

1+y

2 we have

Since r >
A(r) < 2% — (30g(1 + 9)% + 267(1 + 9)? + 187%(1 + 9)* + 49° + 25 + 27%).

S0 A(r) <0 if

. \/30@7(1 +7)3 +265(1 +4)2 + 1852(1 + )2 + 453 + 2y* + 232
28 '
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We need at first to shift the fixed point (7, y) to the origin. Let
Wy = Zn — Y, Up = Vp — Y.
System (4.10.1) will be
Wp+1 = Unp
—\2
Upt1 = p+q_(wn+y) R TLZO, 17 27
L+ (up +9) + r(w, +9)°
Or
Y1 =AY, + G(Y,), (4.12.2)
where
0 1 n
A_<2_ : . >7Yn_<w>7
9(q—rg) —9 u
14+g+ry?  14+5+ry? n
and
1
G(YY) = EB(Y Y) + C(Y YY)+ O(||Y|| )
Bi(Y,Y G Y)Y
B(Y,Y) = YN C(Y,Y,Y) = 1( )
BZ( 9 ) C2<Y7 Y7 Y)
where
Z an a |"7 0 kyj)
and .

S0 Bl(¢7¢) =0 and 01(7%@ 5) = 07
2q(1+y) — 2r(p + 2y(2qy — 2ry°))

B2<w7¢) = (1 + g + Tg2)2 (¢1¢1)_
2y(2ry + q) ]
m(%cﬁz + Pagpr) + W(%(M’
and
o o P
ol 6,€) — 12rg(=3(¢(1 +9) —rp) + 45°(q ry))(¢1¢1§1)+

(A+g+ry?)
_ g) + 24(q — 1) — 6rqy®
e %)11?7 —(i-qmﬁ?;g) oray (Y1018 + Y102&1 + ai &)+

4y(q — 3ry) —6y
W<¢2¢2§1 + V21& + V19262) + m

5 (V20:282).
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Now we find the eigenvectors of A and A7 corresponding to the eigenvalue e

rg?—g—1

at the bifurcation point ¢ = %

Let ¢ and p* be the eigenvectors of A and AT corresponding to the eigenvalue

et respectively. So we have

Ag =g, and ATp* = e~0p*,

(A—e™Dg=0 (4.12.3)
(AT — e )p* = 0. (4.12.4)

Equation (4.12.3) is equivalent to

2y(g—79) i0 7] ~ ] )
Tt ¢~ e/ \&/)  \0

Let ¢y = 1, from the first equation we get

—e™G 4G =0

. 1
so ¢y = €. Thus take § ~ < , >
6190
Note that in order to have a nonzero solution for (A + I)§ = 0, the matrix
(A — e ) must be singular. Which means that |A — ¢ | must equal to zero, so
y 25(q —1y) _

2i00 | ifo
e +e - =
1+y+ry> 14+y+ry?

Thus, ¢ satisfies the second equation.

Now, consider Equation (4.12.4) which is equivalent to

—i6 2y(q—ry) *
—1i6), y * ’
L =™ =gl P 0
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Take p*, = €, from the second equation we get
y

ol 2 —
P 1+ +ry?

P 1+ e 1+_Z _
* 7 Yy * T
sop'y=1+e 01+g+rg2.Thustakep eieoy .
Note that in order to have a nonzero solution for (AT — e [)p* = 0, the matrix
(AT — e ) must be singular. Which means that |AT — e | must equal to zero,

SO 7 _ _
J _29(g—ry) _
1+y+ry2 1+y+ry?

—ifp __

6—2100 + 6—190

Thus, p* satisfies the first equation e*igop*l + (—e m)pg =0.

Now, we normalize p* and ¢,

—iOQg

Tt
IL+y+ry

14 efo__¥
Take p =17 ( Lt ) o = ﬁ

6o
€ T+ry?

. n e
(r*,q) =2

The critical real eigenspace T corresponding to A; 2 is two-dimensional and
spanned by {Re(q), Im(q)}. The real space T corresponding to real eigenvalues of
A is (n — 2)-dimensional. y € T** if and only if (p,y) = 0. Note that y € R" is real,
while p € C".

Any vector x € R" can be decomposed as
T=24+24+y

where z € C', 24+ 2§ € T° and y € T*. The complex variable z is a coordinate on
T¢. We have
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In these coordinates,the map (4.12.2) takes the form
2=e"2 4 (p,G(z4+ 24 + y))
j=Ay+G(2q+ 20 +y) — (,G(2q + 24+ y)d — (b, G(24 + 24 + y))q.
The previous system can be written as
2—ew%~+%sz?+anz+%Gmﬁ—%%Gmfz+<Gm4»z+<Gw4»z
§= Ay + %Hng + Hyzz + %HOZZQ + %H21Z2Z,

where GQ(), GH, GOQ, Ga € C! and G()l, GlO, Hij € C™ and the scaler pl"OdllCt is
in C™.

The complex numbers and vectors can be computed by
G20 = <]§7 B(éa (j)>7 Gll - <]37 B(qAa é))) G02 - <ﬁ7 B(‘i 5»; G21 - <]37 O((j7 (ja q7)>

and

~—
~

H20 - B(qAJ(j) - <]37 B((j7 qA)>(j - <]§)B((j7(j
Hll = B(ijé) - <ﬁvB(qA7 5))@ - <I§7B(Cjag)
and

(Gro,y) = (0, B(4,v)), (Gor,y) = (b, B(q,y))-

The center manifold in the previous system has the representation
. 1 2 N -
Y =V(z2) = Evgoz +v112Z + 51)022
where (G, v;;) = 0. The vectors v;; € C" can be found from linear equations
(€% 1 — A)vyy = Ha,
([ - A)Ull = Hy,
(672i001 — A)UQQ = H02.

These equations have unique solutions. The matrix (I — A) is invertible because 1

is not an eigenvalue of A. If
63’i90 % 1
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the matrices (%% ] — A) are also invertible in C" because 2% are not eigenvalues

of A. Thus, generically the restricted map can be written as

) 1 1 1 -
Z=ez 4 §G2022 + G2z + 500252 + §[G21 +2(p, B(¢, (I — A)71H11)>+

(p. B(q, (™1 — A)™"Ha))]2"2 + ...

taking into account the identities

(I—-A)1'g= _1 (emOI —A) g = e (I-A)1qg= L
q 1—ei90q’ q ei"O—lq’ q 1
and i
(622‘90]_14),1:: e o =
q cifo _ 1(]-
Also z can be written using the map
) 1 )
Z=efy mgka’“zﬂ, (4.12.5)
k,1>2 -

g1 = (9, C(4,4,9)) +2(p, B(q. (I = A)7'B(4,9)))+

o= 200 1A A e (1 —2e)
(p, B(q, (e™™1 — A)""B(¢,9))) + (p, B(q,))(p, B(4,4q))

1 — e
2 ~ P~ 61’90 ~ =~ AN (2
—mKP,B(q,qm - m\(p,B(q,qm :

Or equivalently
z = e 2(1+d(0))]2*

where a(0) = Re{d(0)}, that determines the direction of bifurcation of a closed

invariant curve, can be computed by formula

e—i90921 (1 _ 62’i90>e—2i90 1 5 1 5
a(0) = Re < 9 > — Re ( 2(1 — eif) 920911> - 5’911\ - Z|902| .

Where

A

g20 = (9, B(4,q))-

. a 0
B(4,q) = (2q(1+y)—2r(p+2y(2qy—2rz72))—4y(2ry+q)e“0+2z762i90) .
A+g+r57)
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1 2q(1+7) — 2r(p + 25(2qy — 2ry?)) — 4y(2ry + q)e' + 2je*

(p, B(4,q)) = —— e ——= J-
2+ﬁ (1+g+ry?)?
So
g = e (2q(1 +7) — 2r(p + 2y(2qy — 2ry?)) — 4y (2ry + q)e'% + 2ye?i%)
20 = )

2(1+ 5+ ry?) + e y)(1 + g+ ry?)

g1 = <]§7B<qA,q7>>7

o 0 (0
(@:@) = | 2q(109)-20(p+25205-20) 4 25— A5(2rga) cos(bn) | = :

(I+5+75)? m

U 201 +9) = 2r(p+29(2qy — 2ry°)) + 2§ — 45(2ry + q) cos(6o)

(b, B(4.9)) =

e—i@o* Yy y2)? .
24 (1+g+ry?)
So
, e 2q(1 + ) — 2r(p + 29(2qy — 2ry?)) + 2y — 45(2ry + q) cos(6y)]
1= '

(1 +g+ry?) + e oy)(1 4+ 7+ ry?)

A

Joz2 = <p7 B<§7 é»v

~ A~ 0
B(q.4) = (2q(1+y)—2r(p+2y(2qy—2ry2))—4y(2ry+q)ei90+2y62i90> ’

(I+g+r%)?
5 B(G.3 L 201 +9) = 2r(p+2y(2qy — 2ry%)) — 4y(2ry + gle™™ + 2ge "
(P, B(4,9)) = — ¢ Py .
2+ 15 (1+7+ry?)
So
e™2¢(1 +9) — 2r(p + 25(2qy — 2ry?)) — 45(2ry + q)e + 2ge2i%]
Jgo2 = .

A +g+ry?) +ePy)(1+7y+ry?)
Now to find g9
go1 = <]37 C(qu qu q:)> + 2<]§7 B(qA7 ([ - A)ilB((i 5))>+
N s 260 -1 ~ o~ €_i90(1 —26i90) . . R o=
(. B(q, ("] = A)7B(¢,4)) + — =g, B(4,0)){p. B(¢,9))

2 ~ A V|2 et ~ =~ AN (2
1o |0 B(& DI — 1, B(@ )"
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R 0
C(4,4,9) = 12rg(=3(q(149) —rp)+47°(g—ry)) +(~2¢(1+§)+24(q—ry) —6rqy*) (cos(6o) +¢*°0) +45(q—3rg) (2+e*%) —67¢*%
(1+g+ry?)?

So

) = e™[12rg(=3(¢(1 +§) — rp) +45°(q — 17))]
(L +g+ry?) +eog)(1 + g+ ry?)?
q — 1Y) — 67qy?)(cos(0y) + €0) + 45j(q — 3r)(2 + €2¥) — 6yjeit]
QA +y+ry?) + e oy)(1+ 5+ ry?)? '

(p.C(d: 4,4
24(

e[(—2¢(1+7) +

And

-1
1 -1
(I-4)"= (—2y(q—ry) 14 @ )
1+y+ry? I+y+ry?

= -9
_ 1+y+ry 1+1+y+7,y 1
1+ 2y —2qy + 3ry? 25(g—ry) 1

1+g+ry?
Clpa ® 1+y+ry? m s
(I - A) 1B(Q7Q) = — — — = ;
142y —2qy + 3ry* \m s

_ 2q(1+9) = 2r(p + 2§(2qy — 2ry?)) + 2§ — 4y(2ry + g) cos(6h)
(1427 —2qy + 3rg®) (1L + 5 + ry?)

where

where

v 200+ 9) = 2r(p+ 29(2gy — 2ry?)) — 29(2ry + @)(1+ &™) + 2ge™
(L+y+ry?)?

So

. M1 +7+ry°)
5, B(G, (I — A)"'B(4,§))) = — /.
<p (q ( ) (q q))> 2(1_{_:&_}_7,92) _I_e—leog

) |
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Y- n+1 A4+Bzn+Cx2_|

Finally,

-1
) eZiGo _1
(621901 o A)fl — o ) '
—29(g—7y) 200

y
1+g+rg? 1+y+ry?
_ 1+ 7+ 7y’ (emo + ol 1 )
4i6) i 772 2003 — Vii(g — 1] 2y(q—="7) 2i0
(1 +y+ry?) + ety —2y(g —ry) \  ELL it

(e*™I = A)7'B(,q) =

( 2q(147)—2r (p+25(2q5—2ry2)) —4y(2ry+q)e'®0 +2ge2:% )

1+ g+ ry?
et (1 4+ +ry?) + ey — 2y(q — rY)

B L
- 62i60 L

2q(1+ ) — 2r(p + 2y(2qy — 2ry?)) — 4y(2ry + q)e' + 2ge*
(et (1 + g+ 7ry?) + ey = 25(q — ry)) (1 + 5 + ry?)

(1+g+ry2)? , ,
20 2q(1+7) —2r (p+25(2qy—2rg?)) —47 (2rg+q)e*?0 +2ge2%
(1+g+ry?)?

where

I —

L 0
~ 2106, —1 AANY
B(q, (™1 - A)7B(,4)) =L (2q(1+y)—2r(p+2y(2qy—2ry2))—2y(2ry+q)(e2i90+ei"0)+2ye21'90> :
(1+g+ry?)?

So
(5. B3 (%1 — 4)B(4.q))) = © a0 +5) ~ 2r(p+ 25245 = 2r57))
o | @+ g+ i) T e gL+ g+ 1)
e L—24(2ry + q) (€20 + e~ 4 2¢%i%]
QU+ +77) + e )1+ 7 +r77)

a0) = 3Re (e (5,C(0,4,0)) + Re (¢~ (5. B, (I — ) B(3,0)

1 0 e i 2 g
+5Re (77 (B, B(q, (™1 = A)"'B(4,4))) -

Let

By = Re (¢ (5, C(d.4.0))) . B2 = Re (¢ (5, B(a. (1 = A) ' B(@.))))
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and
By = Re (¢7* (p, B(q, (¥ — A)™'B(4,q)))).

To find Bj:

o oy [12rg(=3(q(1 +§) —7p) +45°(q — 7))
"5, 00,4 9) = QA +g+ri?) + e g1+ §+ ry?)?
e [(—2q(1 + ) + 24(q — ry) — 67qy*)(cos(By) + %) + 43(q — 3ry) (2 + €*%0) — 67¢ei%]

QA+ y+ry?) +eoy)(1+y+ry?)?

Multiplying and dividing by the conjugate of the complex part of the denomi-

nator, the denominator becomes,
A+ g+ + 2L+ g +r)gle™ + ™) + §°) (1 + 5+ 15%)°,
which equals,

WA+ G+ i) + 40+ 7 +r7)Fcos(0) + 7 (1 + 7+ r5?)? = Ay

Multiplying the numerator by the conjugate of the complex part of the denom-

inator, we get,

21+ g +ryg*)[12r5(=3(q(1 + §) — rp) + 45°(¢ — 7))+
g12rg(=3(q(1 + ) — rp) + 45°(q — ry))]e™
+2(1+ 7 +r5?)(—2q(1 + g) + 24(g — 7) — 6rqy*)(cos(0o))+
ge’™(=2q(1 + §) + 24(q — rg) — 6rqy”)(cos(by))+
21+ g +ry°)(—2q(1 +g) + 24(q — ry) — 6rqy®)(”)+
e?™y(—2q(1 + ) + 24(q — ry) — 6rqy°)+
16(1+ 7+ r5°)5(q — 3rg) + 8(1 + 7 + r5)5(g — 3rg)(e*™)+
85%(q — 3ry) (') + 45 (q — 3ry)(€*™) — 125(1 + § + ry*)e’™

_6g262190 )
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Taking the real part of the numerator, we get

2(1+ g +rg*)[12r5(=3(q(1 + §) — rp) +45°(q¢ — 7))+
y[12ry(=3(q(1 +y) — rp) + 45%(q¢ — r§))] cos(6o)
+A(1 + g +15°)(—2q(1 + ) + 24(q — rg) — 6rqy*)(cos(bo))+
J(—2q(1 + 7) + 24(q — ry) — 6rqy®)(cos® (o)) +
J(—2¢(1 + §) + 24(q — ry) — 6rqy*) cos(26)+
16(1 44 +r5°)y(q — 3ry) + 8(1 +§ +75%)5(g — 3ry)(cos(260))+
852(q — 3ry)(cos(by)) + 45*(q — 3ry) (cos(30)) — 124(1 + 7 + ry*) cos(6p)
—67° cos(20y) = As.

So Blzﬁ—?

To find B,

2¢(1+ ) — 2r(p + 20(2qy — 2rg?)) — 29(2ryg + q)(1 + e%)

_Z‘QOABAI_A—IBA7 — -
e <p7 (Q7( ) (QaQ)» S (2(1_i_g_l_T.gQ)_‘_eszOg)(l_‘_g_i_TgZ)

N 2qje'%
A +y+7ry*) + e y)(1 4+ 5+ ry?)

Multiplying and dividing by the conjugate of the complex part of the denomi-

nator, the denominator becomes,

A1+ 7 +ry*)* + 41+ 5+ r5°)ycos(by) + 7)) (1 + 7 + ry°) = As.

Multiplying the numerator by the conjugate of the complex part of the denom-

inator, we get,

s2(1+ 4 +r5%)(2¢(1 + ) — 2r(p + 25(2q5 — 2r5%)))
+5(2q(1 +9) — 2r(p + 29(2qy — 2ry°)))e™ — 4(1+ § + rg*)5(2ry + q)
—4(1+ 5+ ri)y(2ry + q)(e™) — 25°(2ry + q)e®
=27 (2rg + @)(") + 45 (1 + 7 + 17*)e™ + 27>,
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Taking the real part of the numerator, we get

s2(1+ 7 +75)(2¢(1 +7) — 2r(p + 25(2q7 — 2r7%)))
+9(2q(1 + ) — 2r(p + 29(2qy — 2ry”))) cos(6o) — 4(1 + 4 + 15°)y(2ry + q)
—4(1 + 7+ r5)5(2rg + q) cos(6y) — 25°(2ry + q) cos(by)
—2%(2ry + q) cos(200) + 4y(1 + 7 + r7?) cos(0g) + 2% cos(26y)] =

So BQ A_4

To find Bs

“(p, B(q, (21 — A)T'B(4,9))) =
[261(1 + ) — 2r(p + 25 (2q7 — 2ry?))]
2 +g+ry?) +ehg)(1+ g+ ry?)
[—25(2rg 4 q)(e*™ + e7*) + 25e*™]
2(1+ g+ ry?) + e y)(1 + 5+ ry?)
L 20(1+9) — 2r(p + 29(2qy — 2ry?)) — 4y (2ry + q)e™ + 2ge*™
(e (1 45+ ry?) + ¥y — 2y(q — ry))(1 + § + ry?)

Multiplying and dividing by the conjugate of the complex part of the denomi-

nator, the denominator becomes,

A +g+r7)? + 41+ g+ rg>)gcos(Bo) + 521+ 7+ rg?) (1 + 7+ rg*)* + 2
+47%(q — r9)* + 2(1 4+ § + ry*)y cos(26,)
—4y(g—ry)(1+ 5+ 'r’gj2) cos(46y) — 47(q — ry) cos(26y)] = As.

Multiplying the numerator by the conjugate of the complex part of the denom-
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inator, we get,

[(ay + ag + ayz) + (az + a7 + a10)e™® + (as + ag + a11)e*® + a5e¥ + age™ + age™ ] x
(bre™ 4% 4 bye 2% 4 by + bye 30 4 by 4 bget)
= (a1 + ag + a2)bre” " + (a1 + ag + a12)bae > + (a1 + ag + a12)bs+
(a1 + ag + a12)bse ™ 4 (a1 + ag + ar2)bse ™% + (a1 + ag + a12)bse™+
(ay + a7 + a10)bre™ + (ay + a7 + ay0)bee ™ 4 (ag + a7 + ayo)bse™®+
(a2 + a7 + a10)bse™>™ + (az + ar + a10)bs + (az + az + ar)bse™ ™ +
(as + ag + a11)bre % + (a3 + ag + a11)bs + (as + ag + ayy)bge®+
(a3 + aq + ai1)bse™™ + (a3 + ay + a11)bse™ + (az + ag + ayy)bse*+
asb1e 7% 4 asboe™® + ashse® + asby + asbse'® + asbge ™+
aghy + agboe®™® + aghse®® 4 aghye™® + agbse®?+
asbee™® + aghie % 4 aghye 3 1 gobye i 4+

(19646_4290 + a9b5e_219° + CLgbG

Where

a1 = [2q(1 + ) — 2r(p + 2y(2qy — 2r5*)))*.
as = —45(2ry + q)[2¢(1 + 7) — 2r(p + 25(2q7 — 2ry*))].

az = 2[2q(1 4 7) — 2r(p + 25(2qy — 2ry°))]y.
ag = =25(2ry + q)[2¢(1 + ) — 2r(p + 25(2q7 — 2rj*))].

as = ag = 85 (2ry + q)°, ar = as = —45°(2ry + q).

ag = —2[2q(1 + ) — 2r(p + 2y(2qy — 2ry*))|y(2ry + q).
a1 = 2712¢(1 + ) — 2r(p + 25(2qy — 2rif°))].

an = =85 (2ry +q), @z = 45",
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by =21+ g +7ry%)? by=2(1+79+7ry)7.

by = —4(1+ 7 +r5))glq —ry), by= 1+ 7+

bs = 7%, be = —20°(q — 17).

Taking the real part of the numerator, we get

(agbg + agby) cos(56y) + ((a1 + ag + a12)by + agby + agbs + asbg) cos(46y)+
((a1 + ag + a12)bs + (az + a7 + a19)by + (as + a4 + a11)bs + asbs + asbs + aghy) cos(36y)+
((a1 + ag + a12)ba + (a2 + a7 + a19)bs + (az + a7 + a10)bs + (as + as + a11)by
+(as + ag + ai1)bs + agby + agbs) cos(20p) + ((a1 + as + a12)bs
+(a1 + ag + a12)bg + (az + a7 + a10)by + (a2 + a7 + a10)bs + (a3 + aq + a11)by
+(as + ag + a11)bs + asby + asby + asbs + agby + agbz) cos(6y)
+(a1 + ag + a12)bz + (az + ar + a10)bs + (a3 + as + a11)ba + asby + aghy + agbs

= As.
Where
y
9 == — .
oS0 = T g+ )
-2
cos(260y) = 2cos?(fy) — 1 = 0T 5+ T L.
3 y 3y
cos(30y) = 4 cos®(0y) — 3cos(by) = Ty ) + A+ 1)
-2
cos(46p) = 2cos(26) — 1 = 2 Y 2oL

21+ g + ry?)?
cos(56y) = 2 cos(26p) cos(36y) — cos(6p)

—1)(— LA A EA—
214+ gy +ry?)? 20+ g+ry?)? 200 +gy+ry?) 2(1 4+ y + ry?)
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SO Bg = i—s And
1 1
Q(O) = §Bl + BQ + 533

Theorem 4.8. If a(0) < 0 (respectively,> 0), then Neimark-Saker bifurcation of
system (4.12.2) at q = q* is supercritical (respectively, subcritical) and there exists
a unique invariant closed curve bifurcates from the positive fized point y which is

asymptotically stable (respectively, unstable).

4.13 Matlab codes and numerical discussion 2

In this section we introduce Matlab codes that use our results, and then we insert
some examples.

Matlab code for period-doubling bifurcation:

r= ; %r wvalue
p= ; %p wvalue
u=0;
a=—r /2
t =[al 0.5 —p];
1= roots(t)
for m= 1:3
if 1(m)>0

u=u+1;

"The positive fixed point is’
y=1(m)
"The bifurcation value of the parameter q is
q=(3xr*xy "24+1)/(2xy)
A=—1x( (I+y+r=*(y) "2) /(14 (2xq+1)xy—rx(y) "2));
B=12srxy*(—3%(qx(1+y)—r*p)+dxy " 2% (q—rxy) ) —3*%(—2xq*x(1+y) +24%(
q—r*y ) —6xrkqxy " 2)+ 12xyx(q—3%r*ky) + Oxy;
U=(14y+r*y " 2)"3 ;

)
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D=Ax(B/U) ;

F=(2%y* (3% q+1+4srxy )+2xq—2%1 % (p+2*y* (25 qxy+2xr*xy " 2) ) )
[((2xy+rxy 2 )#(1+(2xq+1)xy—Txy 2 ) );

L=(2xqx(14y)—2%r % (p+2xy* (2% qxy—2xr*y "2 ) )—2xy )/((14+y+r*y
"2)72 )5

J=FxL;

c=(1/6)«D—(0.5 )x*J

if ¢>0
" A unique and stable period—two cycle bifurcates from

the fixed point at the bifurcation point.’

end

end

end

amin=0;

amax=10;

x0=.2;x1=.3;

n=1000;

jmax=200;

t=zeros (jmax+1,1);

z=zeros (jmax+1,250);

del=(amax—amin) /jmax

for j=1:jmax+1

x=zeros (n+1,1);

x(1)=x0;x(2)=x1;

t(j)=(j —1)xdel+amin;

a=t(J);

for i=2:n

x(i+1)=(pta.x(x(i—=1))"2)/(14+(x(i))+r=x(x(i—=1))"2);

if (i>750)

z(j,1—=750)=x(i+1);

end
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end

end

plot (t,z, 'blue’, MarkerSize’ ,5),title (’Period—doubling
bifurcation ”)

if u==
"The system does not undergo period—doubling (flip )

bifurcation .

end

Example 4.3. Consider the difference equation (4.2.1). Fix p, r, and consider q
as bifurcation parameter. Take p = 0.5, r = 1.8, and 0 < ¢ < 10. Fquation (4.2.1)

becomes
0.5+ qy?_,

14y, +1.8y2 |’

yi(n+1) Y2 (n)
( 0= 0.5 g1 (m)? . (4.13.2)
ya(n+1) 14y2(n)+1.8y1 (n)?

The positive equilibrium point § of (4.13.1) satisfies

Ynil = n=20,1, 2, .. (4.13.1)

Which s equivalent to

1.87° + (1 —q)7* + 5 — 0.5 = 0. (4.13.3)

Theorem 4.2 shows that the fized point undergoes a period-doubling bifurcation at
— IL8PHL g, Equation (4.13.3) at q* becomes

2y
—0.97° + 4% 4+ 0.55 — 0.5 = 0.
Which has two positive roots, so we have two values of ¢*.
Thus the first value of ¢* gives the following fixed point of (4.13.1)
y = 0.6495.

Substituting the value of y in ¢* we get

¢ = 2.5235.
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Now to determine the direction of period-doubling bifurcation we find ¢(0).
c(0) =0.9539 > 0

So this shows that a unique and stable period-two cycle bifurcates from the fixed point
at the bifurcation point ¢* = 2.5235.

The second value of ¢* gives the following fixed point of (4.13.1)
y = 1.1840.
Substituting the value of y in ¢* we get
q" = 3.6192.
Now to determine the direction of period-doubling bifurcation we find c(0).
c(0) = —0.4132

So this shows that no stable period-two cycle bifurcates from the fized point at the
bifurcation point ¢ = 3.6192.

Figure (4.5) shows the stable period-two cycle.

Period-doubling bifurcation

45

3.6

y(n) 257

15

05

0.5+qy2_,

Fig. 4.5: Period-doubling bifurcation of y,+1 = T8 "
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And using the Matlab code we get the following output
a = -0.9000
l =

~0.7224
1.1840
0.6495

ans = "The positive fixed point is’

y = 1.1840
ans = "The bifurcation value of the parameter q is ’
q=3.6192
c=-04132

ans = "The positive fixed point is’

y = 0.6495
ans = "The bifurcation value of the parameter q is ’
q = 2.5235
c = 0.9539

ans = ~ A unique and stable period-two cycle bifurcates from the fized point at the

bifurcation point.’

Period-doubling bifurcation
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Matlab code for Neimark-Sacker bifurcation:

r= ;%r value

p= ; %p wvalue
e=r/2;

t = [e 1.5 1.5 —p];
1= roots(t)

1=0;

for m=1:3

if 1(m)>0

y=1(m);

if (rxy"2—y—1)/(2xy)>0
"The positive fixed point is’
y=1 (m)
"The bifurcation value of the parameter q is ’
q=(r*y 2—y—1)/(2xy)
i=1+1;
T=((30xy*(1+y) " 34+26xy*(1+y) "2+18x(y "2)*((14+y) "2)+4xy
"342xy "442xy "2) /(2xy"6)) " (0.5);
if r<T

"The Neimark—Sacker bifurcation conditions hold ’

"cos (Theta_0)=’

o=—1x(y) /(2% (1+y+r*y 2))

Theta_O0=acos (o)

Al=(4x(1+y+r*y " 2) " 244x(14+y+r*y " 2)*xy*cos( Theta_0)+y " 2) «((1+y+
rxy 2)72 );

A2=2x(1+4y+rxy " 2) *(12xr*xy*x(—3*(q*(14+y)—r*p )+dxy 2x(q—1rxy)))+
yx(12xrxyx(—3%(qx(1+y)—r*p )+4xy 2%x(q—r*y)))*cos(Theta_0)
+4x(1+y+r*xy " 2) % (—2xqx(14+y) +24%(q—r*y ) —6xr*q*y " 2) *(cos (
Theta_0) )+y*(—2xqx(1+y) +24x(q—r*y) —6xr*q*y " 2) *(cos(
Theta_0)) "24+y*x(—2xq*(1+y) +24*(q—r*y) —6xr*qxy " 2)xcos (2%
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Theta_0)+16%(1+y+r*y " 2)xy*(q—3*r*xy)+8+((1+y+r*y"2))*y=*(q
—3%rxy)*cos(2x Theta_0)+8*y " 2x(q—3xr*y)*cos(Theta_0)-+4xy
"2x(q—3*r*y)*cos(3x Theta_0)—12xy*(1+y+r*y 2)*cos(Theta_0)
—6xy "2+ cos (2% Theta 0) ;

B1=A2/Al

A3=(4x(1+y+r*y " 2) " 244*%(14+y+r*y " 2)*y*cos( Theta_0)+y " 2) x((1+y+
rxy”2));

s=(2xqx(14y) —2%1 % (p+2xy * (25 qxy—2%krxy "2 ) )+2xy —dsy* (2% r*y-+q)
xcos (Theta 0))/((1+2xy—2xqxy + 3xrxy 2 ) *x(1+y+rxy”2) )

Ad = sx(2x(14y+r*xy " 2) (25 qx(14+y) —2x1 % (p+2%y * (2% qxy—2xr*y "2))
Yy k(25 qx(1+y) —2%1 % (p+2*y* (2% qxy—2xr*y " 2) ) )xcos ( Theta_0)
—Ax(14y+rxy " 2) ky* (2% rxy+q) —4*(1+y+r*y " 2)*y* (2% r*y+q)*cos (
Theta_0)—2%y " 2% (2xr*y+q)*cos( Theta_0)—2xy 2% (2% rxy+q)*cos
(2+ Theta_0)+4xy*x(1+y+rxy " 2)*xcos(Theta_0)+2+y " 2xcos (2x
Theta 0));

B2=A4/A3

AS=(4x(1+y+r*y " 2) 244 (14+y+r*y " 2)*y*cos( Theta_0)+y " 2) x((1+y+
rxy " 2) "2 )x((1+y+r*y 2) 24y 24+4xy " 2% (q—r*y) "2+42%(14+y+r*y
"2)xyxcos (2% Theta_0)—4xyx(q—1rxy)*(1+y+r*y 2)*cos (4x*
Theta_0)—4xy*(q—r*y)*cos(2xTheta 0) );

al=(2xqx(14y) —2#r *(p+2xy x (2xqxy—2*rxy "2))) " 2;

a2=—4xy* (2xrxy+q) * (2% qx(14y) —2%r x (p+2xy * (2% qxy—2%r*xy "2)) ) ;

a3=2x(2xqx(1+y) =21 * (p+2xy* (2% qxy—2%r*y "2) ) ) *y;

ad=—2xy*x (2% r*y+q) * (2% qx(14y) —2%r % (p+2xy* (2% qxy—2%r*y "2)));

a5=8x(y"2) *(2xrxy+q) "2;

ab=8x(y " 2)*(2xrx*xy+q) " 2;

aT=—4x(y "2) % (2xrxy+q) ;

a8=—4x(y " 2) x(2xr*xy+q) ;

a9=—2x%(2xq*(14y ) =21 * (p+2%y* (2 qxy—24r%y "2) ) )y * (2% r*xy+q) ;

al0=2xy*(2xq*(14y) =241 *(p+2ky* (2% qxy—24r%y "2) ) ) ;
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all=—8x(y " 2)*(2xr*xy+q);

al2=4xy " 2;

bl1=2%(14+y+r*y 2) "2;

b2=2%(1+y+r*y " 2)x*y;

b3=—4x(14+y+r*y " 2)xy*x(q—1r*y );

bd=(1+y+r*y " 2)*y;

bb=y " 2;

b6=—=2x(y " 2) *(q—1xy);

A6=(a8+b6 +a9xbl)xcos(5xTheta 0)+((al +ab+al2)*bl +a9xbd+a8x
b3+ab*b6)*cos(4x Theta_0)+((al +ab+al2)xbd+(a2+a7+al0)x«bl
+(a3+ad+all)*b6+abxb3+a8xbb+a9d*b2)*cos(3* Theta 0)+((al +
ab+al2)xb2+(a2+a7+al0)xbd+(a2+a7+al0)*xb6 +(a3+ad+all)xbl
+(a3+ad+all)*b3+a8+b24+ a9%b5 )xcos(2xTheta_0)+((al +ab+
al2)xbb+(al +ab+al2)*b6 +(a2+a7+all)=*b2+(a2+a7+all)xb3+(
a3+ad+all)xb4d +(a34+ad+all)*b5 +abxbl +abxb2 +abxb5 +al8xb4d
+a9%b3)*cos(Theta_ 0)+(al +ab+al2)*b3+(a24+a7+all)xb5+(a3+
ad+all)xb2+ab*b4d+a8xbl+a9xb6 ;

B3=(A6) /(A5)

a_-0=0.5xB1+B2+40.5%B3

if a_0<0
"the Neimark— Sacker bifurcation is supercritical.’

else

"the Neimark— Sacker bifurcation is subcritical.’

end
end

end

end

end

if i=—=

"The system does not undergo Neimark—Sacker bifurcation.

)
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end
"The bifurcation diagram:’
amin=0;

amax=10;

x0=1;x1=1;

n=1000;

jmax=200;

t=zeros (jmax+1,1);

z=zeros (jmax+1,250);
del=(amax—amin) /jmax ;

for j=1:jmax+1

x=zeros (n+1,1);
x(1)=x0;x(2)=x1;
t(j)=(j—1)xdel+amin;

a=t () ;

for i=2:n
x(i4+1)=(pta.*(x(i—=1))"2)/(1+(x(i))+r*(x(i—1))"2);

if (i>750)
z(j,1=750)=x(i+1);
end
end
end

plot(t,z, blue’,’MarkerSize’ ,6),xlabel(’parameter q’),
ylabel (’'y(n+1)")

Example 4.4. Consider the difference equation (4.2.1). Fiz p, r, and consider q
as bifurcation parameter. Take p = 2, r =9, and 0 < q < 10. FEquation (4.2.1)

becomes
2+ qy2_,

14y, +9y2

Ynp1 = =0, 1, 2, .. (4.13.4)
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Which s equivalent to

+1 n
nin+ ) (0 ) - (4.13.5)
(n+1) 2+qy1(n)
Yo\ Ly () +9y1 (n)?
The positive equilibrium point y§ of (4.13.4) satisfies
9° +(1—q)y* +y—2=0. (4.13.6)

Theorem shows that the fived point undergoes a Neimark-Sacker bifurcation at ¢* =
_9@22_57_1. So Equation (4.13.6) at ¢* becomes

4.5 +1.55° + 1.5 —2 = 0.
Which has one positive roots.
Thus the value of ¢* gives the following fixed point of (4.13.4)

y = 0.5462.
Substituting the value of y in ¢* we get

q" = 1.0424.
Now to determine the direction of period-doubling bifurcation we find a(0).

a(0) = 11.7658 > 0

So this shows that the Neimark- Sacker bifurcation at ¢* = 1.0424 is subcritical.

Figure (4.6) shows that the positive fized point § is asymptotically stable for
q > ¢* and change it’s stability at Neimark-Sacker bifurcation value q*. Figures
(4.7) and (4.8) shows phase portraits associated with figure (4.6) at ¢* and ¢ = 1.1,

respectively.
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Y n+1 A+an+Czi_1

yin+1)

parameter g

24qy2_,

Fig. 4.6: Neimark-Sacker bifurcation of y,+1 = Tront92 -

065

06 rE;

x(n-2)
=}
o
o

05

0.45 L L L )
0.45 0.5 0.55 0.6 0.65

2+qy?_,
T+yn+9y2

*

Fig. 4.7: Phase portraits of the map y,4+1 = at ¢*.
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0.58

0.57

0.54

0.53

0.52 . . . . . . . . . .
052 0525 053 0.535 054 0.545 0.55 0555 0.56 0565 0.57
x(n)

2+qyi71

Fig. 4.8: Phase portraits of the map y,1+1 = THynt+992_,

at g =1.1.

And using the Matlab code we get the following output
] =
-0.4398 + 0.78761
-0.4398 - 0.78761
0.5462 4 0.0000i

ans = "The positive fixed point is’

y = 0.5462
ans = 'The bifurcation value of the parameter q is’
q=1.0424

ans = 'The Neimark-Sacker bifurcation conditions hold ’

ans = 'cos(Thetag) =’

o = -0.0645
Thetay = 1.6354
B1 = 17.2905
B2 = 1.5522

B3 = 3.1367
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ap = 11.7658

ans —

'the Neimark- Sacker bifurcation is subcritical.’

ans = "The bifurcation diagram:’

~ 08

win+1

parameter q



5. CONCLUSION

In this thesis, we considered the second order, quadratic rational difference equations

05+/6xn—1
Tpy1 = ) TLIO, 1, 2,
AL Bx? 4+ Cxpy
and )
o+ pxr
Tpg1 = bz n=0,1,2, ..

A+ Bx, + Ca2_|’
With positive parameters o, 3, A, B, C, and non-negative initial conditions.

We focused on local stability, invariant intervals, boundedness of the solutions, pe-
riodic solutions of prime period two and global stability of the positive fixed points.
And we studied the types of bifurcation exist where the change of stability occurs.
Then, we give some Matlab codes that use thesis results and numerical discussions

with figures to support our results.

For the first equation, the change of variables

VA

Ty = ——=

\/Eyn'
reduced equation (3.0.1) to the difference equation

p + qYn—1
1 + y2n + TYn—1 7

Ynt1 = TLZO, ]., 2,

_ . ¥B B _ _cC
Wherep—am,q—z,andr—\/T—B.

We proved the existence of the unique positive equilibrium point of our differ-

ence equation, and then we gave a Matlab code to find it.
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Then we found the linearized equation and the characteristic equation. And we
checked when the unique positive equilibrium point § of equation (3.2.1) is locally
asymptotically stable. We investigated also two invariant intervals. And we showed

that any solution takes its values between 0 and p + %.

Then we set some conditions on ¢ that must hold when two periodic cycle exist.
And we gave a case for global stability. And we introduced Matlab code that uses
our results for finding the fixed point and its stability and solution behavior, and

then we gave some examples.

Finally, we studied the bifurcation of our difference equation. And we concen-

trated at the Period-Doubling (Flip) Bifurcation and its direction.

And for the second equation, the change of variables

A

Tp = =UYn-

B

reduced equation (4.0.1) to the difference equation

+ qy?,_
Yni1 = P qyn21 ,n=0,1,2, ..
1+y, +1ry%,4
Wherep:a%,q:%,andr:%ﬁ.

We proved the existence of the unique positive equilibrium point of our differ-

ence equation, and then we insert a Matlab code to find it.

Then we found the linearized equation and the characteristic equation. And we
checked when the unique positive equilibrium point § of equation (4.0.1) is locally
asymptotically stable. We investigated also two invariant intervals. And we show

that any solution take its values between 0 and p + 4.

Then we set some conditions on ¢ that must hold when two periodic cycle exist.
And we gave a case for global stability. And we introduced Matlab code that uses
our results for finding the fixed point and its stability and solution behavior, and

then we gave some example.
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Finally, we studied the bifurcation of our difference equation. And we concen-
trated at the Period-Doubling (Flip) Bifurcation and the Neimark-Sacker bifurcation

and their directions.
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Matlab code for chapter one

Figures 1.2 and 1.3

The Cobweb diagram and the behavior of the solutions near the fixed point of
f(x) =3z — 2%

r=3; % growth rate

x0=0.2; %initial population z0
n=80; %end of time interval
x=zeros (n+1,1);
t=zeros(n+1,1);

x(1)=x0;

tt (1)=0;

for i=1:n

t(i)=i—1;
x(i41)=x(1)*(r—=x(i));

end

t (n+1)=n;

nn=100;

del=3./nn;

xstart =0;

yy=zeros (nn+1,1);

lin=zeros (nn+1,1);

Y
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xx=zeros (nn+1,1);

for i=1:nn+1

xx(1)=xstart+(i—1)xdel;

lin (1)=xx(1);

yy (1)=xx(1)*(r—=xx(i));

end

plot (xx,lin ,xx,yy)

title ('cobweb diagram for f(x)=x(2—x), x0=0.2")  pause
xc=zeros (24 ,1);

yc=zeros (24 ,1);

xc (1)=x0;

ye (1) =0;

xc (2)=x0;

ye (2)=x0x(r—x0) ;

ye(3)=yc(2);

xc(3)=yc(2);

plot (xx,lin ,xx,yy,xc,yc),axis ([0 2 0 1.5]) ,pause

for j=3:20;

Ji=2%] =4
xe(jj)=xc(jj—1);
ye(ji)=xc(jj)=(r—=xc(jj));
xe(jj+1)=yc(jj)
ye(ji+l)=yc(ji)
plot (xx,lin ,xx,yy,xc,yc), axis ([0 2 0 1.5]) ,pause

)

)

end
plot(t,x,t,x,’.")

xlabel ( 'n—iteration ’) ,ylabel('x(n)’), axis ([0 80 0 1.5])

title (’stability of fixed point’)



6. Appendices 144

Matlab code for chapter two

Figure 2.3

Saddle-node bifurcation of the map f(x) = 2 — cz.
figure (8), hold on

for i=-0.25:0.0001:0.75
x=—(1—sqrt (1+4x*i)) /2;

plot (i,x, =’ , MarkerSize’ ,6)
axis([—0.5 1 =2 2])
end

for i=-0.25:0.01:0.75

y=—(1+sqrt (1+4x*i)) /2;

plot (i,y,’—’, MarkerSize’ ,6)

title (’Saddle—node bifurcation of the map f(x)=x"2—c x’)
xlabel ('parameter c’),ylabel(’x")

end

hold off

Figure 2.4

Transcritical bifurcation of the map f(z) = z* + cx.

figure (6), hold on
for i=-1:0.03:1

x=1—1i;

plot(i,x, —’, "MarkerSize’ ,6)
axis([—2 4 —2.5 2.5])

end

for i=-—1:0.001:1
y=0;
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plot (i,y,’—’, MarkerSize’ ,6)
end

for i=1:0.001:3

x=1—1;

plot(i,x, —’, MarkerSize’ ,6)
end

for i=1:0.03:3

y=0;

plot(i,y, —’, MarkerSize’ ,6)

title (Transcritical bifurcation of the map f(x)=x"24c x)

xlabel ('parameter c¢’),ylabel(’x’)
end
hold off

Figure 2.5

Pitchfork bifurcation of f(x) = cx — 223,

figure (7), hold on
for i=-1:0.001:1

x=0;

plot (i,x, MarkerSize’ ,6), axis([—1.2 2.2 —1 1])

end

for i=1:0.001:2
x=—sqrt ((i—1)/2);
y=sqrt ((i—-1)/2);

plot (i,x, ’blue’ i,y, blue’, MarkerSize’ 6)

end
for 1i=1:0.04:2
x=0;

plot(i,x, =7, "MarkerSize’ 6)
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xlabel ('parameter c’)

ylabel ('x")

title (Pitchfork bifurcation of f(x)=c x —2x"3)
end

hold off

Matlab code for chapter three

Figure 3.1

i : 445y
The behavior of the solutions of y,,1 = —1+yj+gn5yl -
n . n—

n=70;

x=zeros (n+1,1);

t=zeros(n+1,1);

x(1)=0.1;x(2)=1.1;

tt (1)=0;

for i=2:n

t(i)=i—1;
x(14+1)=(4+5*x(1—1)) /(14+(x(i)) "24+0.5%x(i—1));

end

t (n+1)=n;
plot(t,x,t,x,’. ") xlabel( 'n—iteration’) ,ylabel( ’x(n)’)
axis ([0 70 0 10]), title (’unstabile fixed point’)

Figure 3.2

- - 0.54+0.3yn—
The behavior of the solutions of y,11 = ﬁ.
210.5yn—

n="70;
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x=zeros (n+1,1);

t=zeros(n+1,1);

x(1)=0.1;x(2)=1.1;

tt (1)=0;

for i=2:n

t(i)=i—1;
x(1+1)=(0.5+0.3xx(i—1)) /(14+(x(1)) "240.5%xx(i—1));
end

t (n+1)=n;
plot(t,x,t,x,’. ") xlabel( 'n—iteration’) ylabel(’'x(n)’)
axis ([0 70 0 10]), title (’unstabile fixed point’)

Figure 3.3

1+qyn—1

Period-doubling bifurcation of y, 1 = T2 009

amin=0;

amax=10;

x0=.2;x1=.3;

n=1000;

jmax=200;

t=zeros (jmax+1,1);
z=zeros (jmax+1,250);
del=(amax—amin) /jmax ;
for j=1:jmax+1
x=zeros (n+1,1);
x(1)=x0;x(2)=x1;
t(j)=(j—1)xdel+amin;
a=t () ;

for i=2:n
x(i4+1)=14a.xx(i—=1))/(1+(x(i)) "2+.9.xx(i—1));



6. Appendices 148

if (i>750)

z(j,1—=750)=x(i+1);

end

end

end

plot(t,z, blue’, ’MarkerSize’ ,5),title (’Period—doubling

bifurcation )

Matlab code for chapter four

Figure 4.3

0.4+5y2

The behavior of the solutions of y,11 = Ty 052"

n=70;

x=zeros (n+1,1);
t=zeros(n+1,1);
x(1)=0.1;x(2)=1.1;

tt (1) =0;
for i=2:n
t(i)=i—1;

x(1+1)=(0.445*(x(i—1)) "2) /(1+(x(1))+0.5%(x(i—1)) "2);
end

t (n+1)=n;
plot(t,x,t,x,’. ") ,xlabel( 'n—iteration’) ,ylabel( ’'x(n)’)
axis ([0 70 0 10]), title (’unstabile fixed point’)

Figure 4.4

0.54+0.5y2 _;

The behavior of the solutions of y,11 = Tyn+0.5y2
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n="70;

x=zeros (n+1,1);

t=zeros(n+1,1);

x(1)=0.1;x(2)=1.1;

tt (1)=0;

for i=2:n

t(i)=i—1;
x(141)=(0.540.5%(x(1i—1)) "2) /(1+(x(1))+0.5%(x(i—1)) "2);
end

t (n+1)=n;
plot(t,x,t,x,’.") xlabel( 'n—iteration’) ,ylabel(’'x(n)’)
axis ([0 70 0 10]), title (’stabile fixed point’)

Figure 4.5

0.5+qy2_,

Period-doubling bifurcation of ¥,,1; = Ty 182 "

amin=0;

amax=10;
x0=.2;x1=.3;

n=1000;

jmax=200;

t=zeros (jmax+1,1);
z=zeros (jmax+1,250);
del=(amax—amin ) /jmax ;
for j=1:jmax+1
x=zeros (n+1,1);
x(1)=x0;x(2)=x1;
t(j)=(j—1)xdel+amin;
a=t () ;

for i=2:n
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x(i4+1)=(0.5+a.%(x(i—1))"2)/(1+(x(i))+1.x(x(i—=1))"2);

if (i>750)

z(j,1=750)=x(i+1);

end

end

end

plot (t,z, 'blue’, MarkerSize’ ,5) ,title (’Period—doubling

bifurcation ”)

Figure 4.6

2+qy72171

Neimark-Sacker bifurcation of y, 11 = ET

amin=0;

amax=10;

x0=1;x1=1;

n=1000;

jmax=200;

t=zeros (jmax+1,1);

z=zeros (jmax+1,250);

del=(amax—amin ) /jmax ;

for j=1:jmax+1

x=zeros (n+1,1);

x(1)=x0;x(2)=x1;

t(j)=(j—1)xdel+amin;

a=t () ;

for i=2:n

x(i4+1)=2+a.*(x(i—-1))"2)/(1+(x(i))+9x(x(i—1)) "2);
if (i>750)

z(j,1=750)=x(i+1);

end
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end

end

plot(t,z, blue’,’MarkerSize’ ,6),xlabel(’parameter q’),
ylabel ('y(n+1)")

Figure 4.7

2+qy,2171
1+yn+9y2_,

*

Phase portraits of the map y,,1 = at ¢*.

N=1000; x(1)=1;x(2)=1;

for = 1.0424

for n=2:1:0.3%N
x(n+1)=(2+q.*(x(n=1)) "2) /(1+(x(n) ) +9%(x(n—=1)) "2) ;
x(n—1);

end

figure (2), hold on

for n=0.3xN :1:N

% (n1)=(2+q .+ (x(n—1)) "2) /(1+(x(n) ) +9x(x (n=1)) "2) ;

x(n);

plot (x(n) ,x(n—2),’. ", MarkerSize’ ,5) ,axis ([0.45 0.65 0.45
0.65])
xlabel (’'x(n)’) ,ylabel(’'x(n—-2)")
end
end
hold off
Figure 4.8
Phase portraits of the map y,,1 = B at ¢ = 1.1.

T+yn+9y2 |
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N=900; x(1)=1;x(2)=1;

for gq=1.1

for n=2:1:0.3%N

X (n1)=(24q .+ (x(n—1)) "2) /(14 (x (n) ) +9% (x (n—1)) "2) ;
x(n—1);

end

figure (2), hold on

for n=0.3xN :1:N

X (04 1)=(2+q. « (x(n-1)) "2) /(1+(x(n) ) +9+(x(n—1)) "2) :

x(n);

plot (x(n) ,x(n—2),’. 7, MarkerSize’ ,5) ,axis ([0.52 0.57 0.52
0.58])

xlabel ('x(n) ') ,ylabel(’x(n—-2)")

end

end

hold off
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